Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

PHYC10004

SEMESTER 2 EXAMINATION

THURSDAY 9TH NOVEMBER 2017

PHYSICS 2: PHYSICAL SCIENCE AND TECHNOLOGY

Question 1 Electrostatics                                                     (Total 8 marks)

Three charges, -q1, +q2 and +q3 are arranged in a line as shown. The charges are a distance d apart. In this arrangement q3 is in equilibrium while q1 and q2 are fixed.

+q3

a)  Draw and label all of the forces acting on q3, including relative direction and magnitude.

b)  In this arrangement show that q1  = 4 q2 .

c)   The charge q2 is now removed, q1 and q3 have a charge of - 10 nC and +2 nC          respectively and the distance d is 5 cm, what is the electric potential at the position mid-way between the two charges?       (2 + 3 + 3  = 8 marks)

Question 2 Electrostatics                           (Total 6 marks)

An insulator in the shape of a thin ring, radius R, is given a total charge, Q, equally distributed

over the ring.

R

 P

a)  At a point P, a distance of z from the centre of the ring and lying on the axis of the ring as shown above, show that the electric potential due to the ring of charge Q is

V =  

b)  Using the electric potential, write an expression for the magnitude of the electric field at P.               (3 + 3 = 6 marks)

Question 3 Guasss Law                                 (Total 14 marks)

Jean and Yang wish to determine the electric field of a very long charged wire, as shown    below. The wire has a linear charge density of C m- 1 . Jean suggests that a cylindrical        Gaussian surface would be the most useful way to determine the electric field of the wire at point P. Yang disagrees and suggests a rectangular prism.

P

Jean’s Gaussian surface

P

Yang’s Gaussian surface

a)  Explain, in terms of Gauss’s Law, why a cylindrical Gaussian surface is the most appropriate geometry for this situation and not a rectangular one.

b)  Using Gauss’ Law, find an expression for the electric field of the wire at a distance r.

c)   If the charge on the wire is positive and the linear charge density is 20 nC m- 1, what is  the magnitude of the electric field of the wire at P where P is a distance of 8.0 cm from the wire?

d)  Draw a diagram of the electric field of the wire from the following viewpoints. Indicate whether the electric field is uniform or non-uniform.

 

Side View

 

End View                                 (4 + 5 + 2 + 3 = 14 marks)

 

Question 4 Capacitors                         (Total 13 marks)

BestMed, a medical technology company, is designing a new portable defibrillator for             reviving patients whose heart has stopped. The capacitor in the device will be charged to 2000 V and will be required to deliver 400 J of energy on discharge.

a)   Calculate the capacitance required for the capacitor in the device.

To fit inside the casing, the capacitor plates must have an area of 5 m2 and separated by an insulator with thickness of 0.05 mm.

b)  Show that the dielectric constant must be approximately 225 for the insulator

between the capacitor plates to deliver the intended energy to the patient.

A dielectric material with the desired dielectric constant has a dielectric strength of 4 x 106 V m- 1 .

c)  Will this material be a suitable candidate for the machine? Why, why not? Support your statement with appropriate calculations.

Question 5 Circuits                                                (3 + 5 + 5 = 13 marks)                    (Total 8 marks)

A circuit is set up with three resistors and two ideal batteries as in the diagram below. One of the batteries has an emf 10 V, but the emf of the second battery is unknown. An ammeter      shows that 2 A is flowing through the 3  resistor from left to right.

2 A A

I1

I2

a)  Using Kirchoff’s junction and loop laws, determine the emf, , of the second battery.

b) In the circuit above the 3  resistor is replaced with a globe while a current of 2 A is     still measured by the ammeter. The voltage across the globe is measured to still be 6 V and therefore the resistance of the globe is 3  according to the equation V = iR. Can   we assume the globe is ohmic? Explain your answer.                     (5 + 3 = 8 marks)

Question 6 Magnetic Field                     (Total 13 marks)

A certain shaped wire conductor carrying a current I, produces a magnetic field B versus radial distance from the centre of the wire, r as shown in the graph below.

B (T)

33

b           c

r (mm)

2

a)   Draw a diagram and describe the shape of the wire that produces a magnetic field distribution as shown in the graph above. Indicate section a, b and c of your wire  and any significant distances.

b)  If the wire’s overall shape is cylindrical, use Ampere’s law and the graph above to determine the size of the current through the wire.

c)   When Maxwell derived his four equations for Electromagnetism, he added an    extra term to Ampere’s Law. Explain the significance of this extra term and give an example of where we can find evidence for its existence.            (5 + 5 + 3 = 13 marks)

Question 7 Faradays Law                  (Total 13 marks)

A square loop of copper wire moves through a magnetic field, B, as shown in the diagram below. The loop is perpendicular to the direction of the magnetic field, which is into the   page.

30 cm

B=0

 

 

As the loop moves into, through and out of the magnetic field the magnetic flux versus time is shown in the graph.

 

 

t



a)   Sketch the resulting induced emf graph for the loop. Label any areas or points of interest.

b)   From the graph above, which of the following statements (A-E) about the motion of the loop is correct?

A)  The loop travels into, through and out of the field at a constant rate.

B)  The loop travels into the field at a faster rate than through and out of the field.

C)  The loop travels into the field at a faster rate than out of the field, but    we do not have enough information to determine its speed through the field.

D)  The loop travels into the field at a slower rate than through and out of the field.

E)  The loop travels into the field at a slower rate than out of the field, but  we do not have enough information to determine its speed through the field.

The loop is now placed in the centre of the magnetic field which now changes with time according to B = 0.7-0.4t2. The loop has a side length of 10 cm.

c)   What is the magnitude of the induced emf in the loop after 2 seconds?Question 7 (continued)


d)  The magnetic field is now a constant B = 0.7 T and the loop is attached to a            turbine so it can spin around the axis of rotation as shown below. What must the frequency of rotation be to produce a maximum emf of 3 V?

e)   Provide ONE way the emf induced in the loop can be increased by only changing the properties of the loop?    (3 + 1 + 5 + 3 + 1 = 13 marks)

Question 8 Fluids              (Total 14 marks)

A 70 kg ancient Roman statue lies at the bottom of the Mediterranean Sea. Its volume is 3.0  104 cm3 .

a)   How much force is needed to lift it slowly up to the surface?

b)  What is the force needed to hold it stationary once the statue is outside the water?

c)   The statue holds a shield. Archaeologists want to know if the shield is of gold or   gold painted lead. Knowing that the shield has a mass of 14.70 kg on the boat and 13.74 kg when submerged, what is the shield made of?

d)  Water is flowing in a fire hose with a speed of 1.0 m s-1 and a pressure of 200 kPa. At the nozzle the pressure decreases to atmospheric pressure (101.3 kPa), there  is no change in height. Use the Bernoulli equation to calculate the speed of the       water leaving the nozzle.

(Densities: sea-water 1.03  103 kg m-3, gold 19.3  103 kg m-3, lead 11.3  103 kg m-3)         (4 + 2+ 4 + 4 = 14 marks)

Question 9 Heat and Work                                                                          (Total 15 marks)

a)    If 400g of ice at -2 0C is placed in 1 kg of water at 21 0C what is the end product when equilibrium is reached?

b)  It takes 487.5 J to heat 25 grams of copper from 25 °C to 75 °C. What is the specific heat in Joules/g · °C?

c)   Calculate the internal energy change of 1 mol of an ideal monoatomic gas for the following two processes..

i)    1500 J of heat is added to the gas. The gas does no work (and no work is done on the gas).

ii)  1500 J of work is done on the gas (and the gas does no work). No heat is added or taken away.

d)

i)  Calculate the volume of 62.5 mol of oxygen at a pressure of 1.00  105 Pa at T = 27 0C?

ii) If the temperature of the gas in part c) is reduced to - 10 0C but its volume is held constant, what is the new pressure? (Treat oxygen as an ideal gas).   (4 + 3 + (2 + 2) + (2 + 2) = 15 marks)

Question 10 Particle wave duality                                                              (Total 13 marks)

c)   The work function for sodium and caesium are 2.28 eV and 2.14 eV, respectively.

i)   Find the threshold frequency sodium and caesium.

ii)  For incident photons of a given frequency, which metal will give a higher maximum kinetic energy for the electrons?  Explain your reasoning

b)  A Ferrari with a mass of 1200 kg approaches a freeway underpass that is 10 m across.     At what speed must the car be moving to have a wavelength that may be diffracted by the underpass (single slit)? State your assumptions.

c)  We wish to measure the wavelength and position of a photon simultaneously. The          wavelength of the photon is 600 nm and is known with an accuracy p/p = 10-6 . What is the minimum uncertainty in the position of the photon?

 (3 + 3 + 4 + 3 = 13 marks)

Question 11 The black body                                                                        (Total 8 marks)

a)    The Sun can be assumed to be a black body.

i)   Estimate the temperature of the surface of the Sun, knowing that the Sun emits light in the visible spectrum, with  max = 500 nm.

ii)  Assuming the Sun is a sphere, of 6.09 × 1018 m2 surface area, how much power does it radiate?

b)   Although the Sun emits a spectrum of waves all having different wavelengths, model its whole power output as carried by photons of wavelength  max :

i)   Find the energy of one photon.

ii)  Find the number of photons it emits each second.    (2 + 2 + 2 + 2 = 8 marks)

Question 12 The atom              (Total 13 marks)

a)   The Balmer series for the hydrogen atom corresponds to electronic transitions that         terminate in the state of quantum number n = 2, For the following parts of this question, use Bohr’s atomic theory.

i)   Find the energy of the longest wavelength photon emitted.

ii)  Calculate the radius of the Hydrogen atom for n = 10 ?

iii) Calculate the speed of an electron in in an n = 10 state in a hydrogen atom?

b)  On the basis of Bohr’s model of the atom, explain why all emission lines are not observed in absorption.

c)   Assume that the chromium atom (Z = 24) can be treated as  a hydrogen-like atom with a small modification of the Z-value

i)    Calculate the energy difference transition of an electron in a chromium atom from the n = 2 state to the n = 1 state. For this calculation take Z = 23 (to allow for the   shielding effect of a single 1s electron).

ii)    In the Auger process, this energy is not emitted as a photon. Instead, it is            transferred to an electron in the n = 4 state that is ejected by the atom. Use the Bohr  theory to find the kinetic energy of the emitted Auger electron. For the ionisation       energy of the n = 4 state, take Z = 5 (to allow for the shielding of the inner electrons).(2 + 2 + 2 + 2 + 2 + 3 = 13 marks)

Question 13  The nucleus, nuclear decays                                                  (Total 12 marks)

A laboratory has 1.49 g of pure 17(3)N . It has a half-life of 600 s.

a)   Show that the number of atoms initially present is equal to 6.90  1016 .

b)  Find the initial activity for the 17(3)N .

c)  How many atoms remain after 1 hour?

d)  Find the radius of a 17(3)N nucleus.

e)  Write the decay equation that produces a 17(3)N atom by   emission?

f)   Consider two heavy nuclei, X and Y, with similar mass numbers. If X has the higher        binding energy, which nucleus tends to be more unstable? Briefly explain your reasoning. (2 + 2 + 2 + 2 + 2 + 2 = 12 marks)