Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

CH274 - Electrons in Solids and Materials

Exercise 4.2  donor energy level

(a) Determine the position  of the  Fermi  level  relative to  the  CB bottom  at room temperature in a P-doped Si crystal, nd = 1020 m-3 .

(hint: consider the n-type semiconductor in the saturation regime and a effective density of states NC = 1025 m-3)

(b) A n-type semiconductor is said to be degenerate if the Fermi level is closer than 3kT to EC. What is the threshold dopant concentration for P doping?

(c) Determine the fraction of occupied donor states. Verify that the system is in the

saturation regime at room temperature.

(hint: P donor energy level Ed = 45 meV)


Model answer

(a)

For an n-type semiconductor in the saturation regime, n = nd. The density of dopants is small  enough  that  the  structure  of conduction  band  can  be  thought  of as  being unperturbed.

As a consequence, it is possible to write

n = NCe(EC EF ) / kT .

 

By equating this to nd, we get an equation for determining the Fermi level:


nd  = NCe(EC EF ) / kT                                or      e(EC EF ) / kT  =  ,         which becomes

 

EC   EF  = kTln))|| = 0.0256  eV ln ))|| = 0.29  eV.

 

(b)

The threshold doping concentration above which a semiconductor is considered to be degenerate can be obtained from the formula above by imposing

 

EC   EF  = kTln))|| = 3kT ,

which implies

ln ))|| = 3                or            nd  =   5 1023 m-3 .

 

(c)

The fraction of occupied donor states is given by the Fermi function

 

1

f (E) = 1 + e(E 一EF ) / kT     ,

where E = EC Ed.

As a consequence,



f (E) = 1 + e(EC E(1)F Ed ) / kT     e (EC EF Ed ) / kT  = e (0.290.045) / 0.0256 = 7.0 105

where the approximation could be done since EF – Ed >> kT.

 

As a consequence, only about 0.007% of the donor states is occupied, i.e. the donor states are effectively empty, i.e. the donor electrons are almost all in the conduction band. On the other hand, the amount of electrons ionised from the conduction band is still very small since at room temperature, since EF is much closer to the CB than to the VB. As a consequence, this situation is consistent with the assumption that the systems is in the saturation regime at room temperature.

Note that the fraction of occupied states in the conduction band is even lower since it is given by the Fermi function evaluated for E > EC. This is however not in contradiction with the fact that almost all donor electrons are in the conduction band. In fact, the DOS in the CB is much higher than in the donor levels (there are many more CB states than donor levels).