Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

CVEN30011 Smart Transportation

Tutorial Exercise (Module 5: Public Transport)

A recent PTV survey of passengers has revealed the following origin-destination matrix for the morning peak hours (7:00-9:00 am) on a Smart Bus Route in Melbourne.

 

 

You can assume that this demand is distributed evenly throughout this 2-hour period. Please note that in this matrix, the upper right triangle reveals the journeys in the direction from stop 1 to      stop 7, while the lower left triangle reveals the journeys in the direction from stop 7 to stop 1.      Finally, the round-trip time from stop 1 to stop 7 and back again is about 85 minutes.

1.   Create two plots, illustrating the load profiles between stops:

a.   in the direction from stop 1 to stop 7; and

b.   in the direction from stop 7 to stop 1.

The vertical axis should be the load and the horizontal axis should be the segment between stops.

2.   This route operates at a 15-minute headway during the peak hours:

a.   What is the maximum load carried by a single vehicle? Between which two stops, and in which direction, would this maximum load be observed?

b.   what is the minimum load carried by a single vehicle? Between which two stops,

3.   Determine the minimum frequency required on the route, if PTV does not want the maximum load to exceed 90% of the bus capacity of 56 passengers per bus?

4.   What is the optimal frequency for this route, considering both the operator and passenger costs? Use a passenger value of waiting time of $16 per passenger-hour and an operator  cost of $57 per bus-hour.

a.   Round the optimal frequency (up or down) to a number that makes the service frequency easy to remember for the passengers.

b.   With the optimal frequency (rounded), what is the maximum load carried by a single vehicle? Between which two stops, and in which direction, would this  maximum load be observed?

c.   With the optimal frequency (rounded), what is the minimum load carried by a single vehicle? Between which two stops, and in which direction, would this  minimum load be observed?

5.   Given your answers to 3 and 4, do you believe the operator should change frequencies on this route, from the current 4 buses per hour (15 minute headways)? Briefly explain your

answer.

6.   How much is the difference in operational cost (for two hours) between the existing    service and the optimal frequency service? How can one justify the cost difference for optimal frequency?

7.   How many buses are required to deliver the existing service on this route? How many   buses will be required to deliver the optimal frequency service on this route? What does that mean in terms of fleet size requirement for optimal frequency service?