Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MATH202201

Groups and vector spaces

Semester One 201819

1.    (i)  Determine which of the following are groups under the stated operations. For those which are groups, state the identity and inverses, and for those which are not, give one axiom that fails.

(a) The set of 2 x 2 non-singular matrices, under addition,

(b) The set of positive real numbers, under division,

(c) {0.2.4.6.8{, under addition modulo 10,

(d) {2.4.6.8.10.12{ under multiplication modulo 14.

(ii)  Define a subgroup of a group 点, and prove that the intersection of any two sub- groups of  is a subgroup.  (You may assume without proof that a subgroup has the same identity as 点, and the inverse of an element of the subgroup is the same evaluated in or the subgroup.) Give examples of subgroups and K of (Z.+) whose union is not a subgroup, and calculate what ~ K is.

2.  (i) Define the order of a group, and the order of an element of a group.

(ii) Prove Lagrange’s Theorem, that the order of a subgroup of a finite group divides the order of 点.

(iii) The group table of the quaternion group ○ of order 8 is given.  Find the orders of all elements of ○, and nd all the right cosets of the subgroups  = {1_1{ and J = {1_1.j_j{.

1    _1       i    _i      j    _j      k   _k

_j

j

_k

k

1

_1

i

_i

3.    (i)  Define a permutation of a set x .   Let f and g  be the  permutations of x  = {0.1.2.3.4.5.6{ given by f (z) = z + 3 and g(z) = 3z, where each is evaluated modulo 7. Write f and g as products of disjoint cycles.  Also express f2 , g2 , fg , and gf as products of disjoint cycles, and for each of f , g , f2 , g2 , fg, and gf , determine whether it is even or odd.

(ii)  Prove that the  mapping  θ from a group   to  itself given  by θ(g)  =  g2   is a homomorphism if and only if is abelian.

(iii) State the rst isomorphism theorem for groups.

By calculating the kernel and image of the map given in part (ii), deduce that R* /{1_1{  R+ , where R*  and R+  are the sets of non-zero and positive reals respectively (and the operation is multiplication).



4.  (i) Define linear transformation  from a vector space V to a vector space W over the same eld F .  Define the null space and image of  .  Prove that the null space is a subspace of V and the image is a subspace of W .

(ii) Determine which of the following are linear transformations from R3  to itself, and for those which are, find the null space and image.

(a)  1      .(、)  =    .(、)

(b)  2      .(、)  =   2y2  .(、)

(c)  3      .(、)  =   z  y .(、)

(d) 4      .(、)  =    .(、)

 

 

5.  (i) What is the matrix A of a linear transformation  from C4  to itself with respect to the basis {v1 ; v2 ; v3 ; v4 { of C4 ?

Find the matrix of the linear transformation  from C4  to itself given by

} x        } x + iz  

    =  

(  t         (  y + it  

}0(1)             }1(0)             }   0(1)               } 0_1

where v1  = ( 1 ; v2  = ( 0 ; v3  = ( _1 ; v4  = (   0 .

(ii)  Define the terms symmetric matrix,  and  orthogonal matrix (over R).   Find the

eigenvalues and orthogonal eigenvectors of the matrix B =          .(、)  and hence

find an orthogonal matrix P such that PT BP is diagonal.