Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MAT301 Assignment 6

2022

Justify all claims in your solutions and state the results that you use. You may only use results that have been covered in Weeks 1– 11.

Exercise  1.  Some exercises on the Week 10 exercise sheet will give you all the tools you need for this problem. You should work through those exercises, but you can use them without including proofs of them.

Let b1  = (2, 2) and b2  = (−4, 4).

1. Is β0  = {b1 ,b2 } a basis of Z2 ?

2. Let B = spanZ (β0 ). Prove that B is a free abelian group of rank 2.

3. Find a basis β = {b,b} of B, a basis γ = {c1 ,c2 } of Z2 , and positive integers d1   | d2  such that b = d1 c1  and b = d2 c2 .

4. Express Z2 /B as a direct product of cyclic groups.

Exercise 2.  Let A be an abelian group and let B be a free abelian group of finite rank.  Prove that for every surjective homomorphism π : A → B there exists a homomorphism ι : B → A such that π ◦ ι = idB .

Exercise 3.  Let p be a prime and let Fp  = Z/pZ. Note that SL2 (Fp ) Let P1 (Fp ) be the set of all lines ℓ ⊆ Fp(2)  through the origin of Fp(2) .

of form {at + b : t ∈ Fp } for some a,b ∈ Fp .

acts on Fp(2)  via matrix multiplication. Recall that a line l in Fp(2)  is a subset

1. For each A ∈ SL2 (Fp ) and ℓ ∈ P1 (Fp ), define A · ℓ = {Av : v ∈ ℓ}. Prove that this defines an action of SL2 (Fp ) on P1 (Fp ).

2. Prove that |P1 (Fp )| = p + 1.

(Hint 1: find p+1 vectors v1 , . . . ,vp+1  ∈ Fp(2) such that the elements of P1 (Fp ) are spanFp (v1 ), . . . , spanFp (vp+1).) (Hint 2: what can you say about a,b if the respective subset has to contain (0, 0)?)

3. Define

PSL2 (Fp ) := SL2 (Fp )/Z

where

Z := {kI2  : k ∈ Fp } ∩ SL2 (Fp ) = {kI2  : k ∈ Fp ,k2  = 1}.

Using the action of SL2 (Fp ) on P1 (Fp ) from Part  1,  construct an injective homomorphism from PSL2 (Fp ) to the symmetric group on P1 (Fp ).

4. Using the injective homomorphism from Part 3, prove that PSL2 (F2 )  S3 , PSL2 (F3 )  A4 . (You can use the fact that S4  has a unique subgroup of index 2 without proving it.)