Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Economics of Finance

Tutorial 5

1.  Two securities X and Y make the following payments (for each dollar invested) in the good and bad

weather states:

B G

X

1.10

100


Y

0.80

150

Suppose the good outcome occurs with probability 0.6 and the bad outcome with probability 0.4.

(i)  Compute the expected rate of return on securities X and Y.

Solution

The return is obtained as γ = (c  p)/p = c/p  1. Since p is normalized to 1, γ = c  1.

E(γx ) = prob(Y) × γx (Y) + prob(G) × γx (G) = 0.4 × 0.10 + 0.6 × 0 = 0.04 The expected return on X is 4 %.

E(γY ) = prob(Y) × γY (Y) + prob(G) × γY (G) = 0.4 × 一0.2 + 0.6 × 0.5 = 0.22 The expected return on Y is 22 %.

(ii)  Compute the atomic security prices.

Solution

The atomic prices are given by

patom  = (1  1)   - 1  = (05882  03529)

(iii)  Compute the risk-free rate of return.  Construct a portfolio of securities X and Y that pays the same amount in the good and bad states.

Solution

The discount factor is df = pB  + pG  = 0.9412.Risk-free rate of return is1/df  1 = 0.0625.  This is because if you buy one good and bad atomic security you are guaranteed one dollar in the next period. A portfolio that pays one dollar in each state can be found as follows:

n = o- 1 c =   - 1  ╱  1(1)  =   

That is, you should invest $0.8235 in X and $0.1176 in Y. To obtain $K in each state you should invest K times these amounts in each security.

(iv)  Compute the expected rate of return and risk premia of the atomic securities.

Solution

Returns of the atomics securities in each state of the world are

1  05882

0.5882

0  05882

0.5882

0  03529

0.3529

1  03529

0.3529

Hence, the expected return of the bad atomic security is

E(γB ) = prob(Y) × γB (Y) + prob(G) × γB (G) = 0.4 × 0.7 0.6 × 1 = 一0.32

The risk premia on the bad atomic security is 一0.32 0.0625 = 一0.3825. That is, the bad atomic

security has a 38.25 percent risk discount. The expected return of the good atomic security is E(γG ) = prob(Y) × γG (Y) + prob(G) × γG (G) = 一0.4 × 1 + 0.6 × 1.8337 = 0.7

The risk premia on the good atomic security is 0.7 0.0625 = 0.6375.  That is, the good atomic security pays a 63.75 percent risk premium.

(v)  Compute the forward prices of the atomic securities (risk neutral probabilities).

Solution

The forward prices of the atomic securities (risk neutral probabilities) are

fB  = pB /df = 0.5882/0.9412 = 0.625

fG  = pG /df = 0.3529/0.9412 = 0.375

(vi)  Compare the forward price of each atomic security with the probability of that state being observed. Why are the forward prices and associated probabilities not equal?

Solution

Notice that

pγob(Y) = 0.4     fB  = 0.625

pγob(G) = 0.6     fG  = 0.375

The forward price (risk neutral probability) of a dollar in the bad state is higher than the (physical) probability of the bad state being observed since investors are risk averse and dollars are scarcer (and hence more valuable) in the bad state than in the good state.

2.  Consider the portfolio Z that makes the following payments in four different states (VB, B, G, VG). You are also given (physical) probabilities and forward prices (risk neutral probabilities) of each state

VB

B

G

VG

c

60

10

10

50

prob

03

02

01

04

f

05

03

01

01

Suppose the risk-free rate of return is 5 percent.

(i)  Compute the risk premium of portfolio Z.

Solution

risk premium =   1(1 + i)

eU = probc = 03 × 60 + 02 × 10 + 01 × 10 + 04 × 50 = 41.

fU = fc = 05 × 60 + 05 × 10 + 01 × 10 + 01 × 50 = 39.

→  risk premium =   1(1 + 005) = 005385

The risk premium of Z is 5.385 percent.

(ii)  Compute the risk premia of the four atomic securities.

Solution

risk premiumv B  =   1(1 + i) =   1(1 + 005) = 042

The VB atomic security has a risk discount of 42 percent.

risk premiumB  =   1(1 + i) =   1(1 + 005) = 035

The B atomic security has a risk discount of 35 percent.

risk premiumG =   1(1 + i) =   1(1 + 005) = 0

The G atomic security has a zero risk premium.

risk premiumv G =   1(1 + i) =   1(1 + 005) = 315

The VG atomic security has a risk premium of 315 percent.

(iii) Will the market portfolio pay a risk premium in this case? Explain.

Solution

Assuming that for the market portfolio cv G  > cG  > cB  > cv B , then it will pay a risk premium. This is because dollars in the VG state are worth less than dollars in the G state, which are worth less than dollars in the B state, which are worth less than dollars in the VB state, and the market portfolio pays out more in the states where dollars are worth less. The risk premium compensates investors for the fact that it pays out disproportionately in states where dollars are worth less.

3.  (Expected utility) Suppose you are faced with the following gamble scenario:

● Consume 6000 with probability 0.4

● Consume 3000 with probability 0.6.

Suppose further that your utility function is:

c1 - 

a(c) =

where  = 1/2.(Later will learn that  is the coefficient of relative risk aversion. The higher 礻, the more you dislike risk)

(a) What is your expected utility?

Solution

Notice that with  = 1/2 the utility function becomes U (c) = of this gamble is therefore

c1 1/2

1- 1/2

= 2^cThe expected utility

EU = π(c = 6000) .U (6000) + π(c = 3000).U (3000)

= 042^6000 + 062^3000 = 12769

(b) What is your expected consumption?

Solution

E (c) = π(c = 6000)6000 + π(c = 3000)3000

= 046000 + 063000 = 4200

(c) What is your attitude towards risk?

Solution

Compute utility associated with the expected consumption:

U (E(c)) = 2^4200 = 129.61 > EUgamble ﹐

i.e., with utility of consuming the amount of the expected consumption with certainty is higher than the expected utility of the risky gamble with the same expected consumption.  This means you are risk averse.

(d)  Certainty equivalent, cE, refers to the guaranteed amount of consumption that an individual would view as equally desirable as a risky gamble, that is, EUgab|e  = a(cE).  Compute the certainty equivalent of the gamble.

Solution

The certainty-equivalent cce  is defined as

U (cce ) = π(c = 6000)U (6000) + π(c = 3000)U (3000)

Hence

2^cce  = 042^6000 + 0.62^3000

which implies that cce  = 4076.4.

Notice that the certainty equivalent is lower than the expected consumption. Therefore, the agent in question is risk-averse.

(e)  Suppose now that the coefficient of relative risk aversion is  = 2.Answer to the questions (a)– (d) above for with  = 2.Are agents more or less tolerant to risk than before?

Solution

Notice that with  = 2 the utility function becomes U (c) =  = .The expected utility of this gamble is therefore

EU = π(c = 6000)U (6000) + π(c = 3000)U (3000)

= 0460(一)0(1)0 + 0630(一)0(1)0 = 2666 7 × 10-4

To see what happened to the agents attitude to risk, let us compute his/her certainty equivalent of the gamble. The certainty-equivalent cce  is defined as

U (cce ) = π(c = 6000)U (6000) + π(c = 3000)U (3000)

Hence

cc(一)e(1) = 0460(一)0(1)0 + 0630(一)0(1)0 = 2666 7 × 10-4

which implies that cce  =    = 3750.0.  The agent is now willing to accept a smaller amount for sure instead of a risky gamble.  The agent is more risk averse now ( = 2) than in the first part of the exercise ( = 1/2). This result is general. The agents become less tolerant to risk as their RRA coefficient  is increasing.

4.  (The Role of Finance) Consider an economy in which a representative agent lives for two periods, year 0 and year 1.  The representative agent derives utility from consumption and their time discount rate is β . Suppose there is no uncertainty. The agent life-time utility is given by:

U (c1 c1 ) = ln(c1 ) + β ln(c1 ) ﹐

The agent receives an initial endowment, e, at time zero and recieves income (say from labor) in period zero and one, 夕1  and 夕1 , respectively.  The agent can save, g, or borrow (negative g) money at interest rate i.

(a) Write down the maximization problem in detail.

Solution

The maximization problem entails:

max {a(c1 ) + βa(c1 )} ﹐

)c0c 1 0

g≠.a1 + 1 + 1  i = c1 +  ;

(b) Write down the Lagrangian that represents the maximization problem.

Solution

Construct the Lagrangian:

/ = a(c1 ) + βa(c1 ) + λ {a1 + 1 + 1  i  c1  } ;

(c)  Derive the rst order conditions.

Solution

Take FOCs of the Lagrangian:

a/ ac1 a/ ac1 a/ aλ

=   0 : a\ (c1 ) = λ;

=    0 : βa\ (c1 ) =           ;

=   0 : a1 + 1 +1(1)i(i) = c1 +


From the FOCs, we obtain the so-called Euler’s equation:

a\ (c1 ) = β (1 + i) a\ (c1 );

(d) Interpret the trade-offs you nd.

Solution

The Euler equation states that the maximization condition of the consumer’s utility. Explicitly, it states that marginal utility derived from current consumption is equivalent to the marginal utility derived from future consumption weighted by the hybrid discount factor, where the hybrid discount factor contains the time preference discount factor, β, and the gross interest rate, (1 + i).

(e)  Solve for equilibrium consumption, and saving/borrowing.

Solution

Using ln utility function, a\ (c) =  , now Euler Equation entails:

1

Combine with budget constraint, we can solve:

c1(*)      =     a1 + 1 + 1  i ;

c 1(*)      =     a1 + 1 + 1  i ;

Saving entails:

s = a1 + 夕1 c1 ;

in such equilibrium, saving yields:

s*      =   a1 + 夕1 c1(*);

=      β (a1 + 1 ) 1  i ;

(f)  Suppose 夕1  = 0.4, e = 0.6 and 夕1  = 3, β = 0.98 while i = 0.05.  Compare the welfare (utility) of equilibrium with nancing options (saving/borrowing available) and without.  Comment on your result.

Solution

With borrow and lending,

U   =   ln c1(*) + β lnc 1(*)

=   ln   + 098ln  0981051

=    1.32;

without borrow and lending:

U   =   ln c1(*) + β lnc 1(*)

=    ln (1) + 098ln (3)

=    1.10;

This shows allowing borrow and lending generally expands welfare. Intuitively, borrow and lending are facilitated by nancial system, our result shows an efficient and effective nancial system helps improving social welfare.