Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MATH0053 2020

1.  (a) Give an example of a non-abelian group G with a proper non-trivial normal subgroup H .

S3  is non-abelian and h(123)i  C3  is a proper non-trivial normal subgroup. To see that it is normal we use (b) below. [4 marks]

(b) Prove that if H is a subgroup of a group G and |G/H| = 2 then H is normal in G.

If H has index 2, then since distinct left cosets are disjoint the left cosets are H and G − H . But the same is true for right cosets and hence the unique non-trivial left coset is equal to the non-trivial right coset. Thus H / G. [4 marks]

(c) Give an example of a group G and a subgroup H such that |G/H| = 3 and H is not normal in G.

Let G = S3  and take H = h(12)i. So |H| = 2 and |G/H| = 6/2 = 3. Then (13)H = {(13), (123)}  {(13), (132)} = H(13).

[5 marks]

(d) Let G be a non-abelian group of order 125. Find Z(G) and the quotient group G/Z(G).

If G is non-abelian then Z(G)  G. So since |Z(G)| divides |G| = 125 (by Lagrange’s Thm) so |Z(G)| = 5 or 25. From lectures we saw that G/Z(G)cyclic implies that G is abelian and hence G/Z(G) cannot be cyclic. If |Z(G)| = 25 then |G/Z(G)| = 5 and G/Z(G)  C5 , hence |Z(G)| = 5 and so Z(G)  C5 and G/Z(G) is a non-cyclic group of order 25 of which there is only one: C5  ⇥ C5 . [5 marks]

(e) Prove that if G is a group of odd order and H is a subgroup with |G/H| = 3 then H is normal in G.

Let H be a subgroup of index p in a group G whose order has smallest prime factor p.

Define an action of G on the left cosets of H by x · (gH) = xgH . Labelling the left cosets as L1 ,L2 , . . . ,Lp  this induces a homomorphism from G to Sp  whose kernel is the set K = {g 2 G | gLi  = Li ,  i = 1, . . . ,p}. Since gH = H i↵ g 2 H we must have K ✓ H . Now G/K is isomorphic to a subgroup of Sp so has order dividing |Sp | = p!. It also has order dividing |G|. Since K ⇢ H so |G/K| >  |G/H| = p. Now G is has no prime factors smaller than p so |G/K| = p and hence H = K is normal. [7 marks]


2 .    (a)  Let p > 2 be prime .  Describe all groups of order p.

They are all isomorphic to Cp , since any element of a group of order p generates a  subgroup that  has  order  dividing p,  i .e .   is  either the  identity  or  generates the whole group .  [2 marks]

(b)  Give  two  examples  of  non-isomorphic  groups  of  order p2 ,  explaining  clearly why they are non-isomorphic .

Cp2  and Cp ⇥Cp are non-isomorphic groups of order p2 .  They are not isomorphic since Cp has an element of order p2 , while Cp ⇥ Cp does not .  [2 marks]

(c)  For which pairs of primes p > q is there a unique group of order pq?                   The short answer is there is a unique group of order pq i↵ q - p 1 .  [4 marks] To see why let G be a group of order pq, where p > q and p,q are both prime . Sylow’s  theorem  tells  us  that  np ⌘ 1modp and  np | q,  hence p > q implies that np = 1 .  So there is a unique subgroup of order p, isomorphic to Cp , which is therefore  normal  in  G.   Sylow  also  implies there  is  a  subgroup  of order  q, isomorphic to Cq .  Since these subgroups meet only in the identity (since their intersection has order dividing both p and  q)  and  |Cp ||Cq | = pq =  |G| so we can recognise a semi-direct product:  G = Cp oCq , where ✓ : Cq ! Aut(Cp) is a homomorphism .

Now Aut(Cp)  Cp1  so if q - p 1 there are no non-trival homomorphisms, and the semi-direct product is a direct product and so G  Cp ⇥ Cq  Cpq .  [4 marks]

If q | p 1 then there is also a non-abelian group of order pq.  Let Cp =  hx | xp = 1i.  Let φh be a generator for Aut(Cp) = hφhi,  (this exists since Aut(Cp) is  cyclic)  where  2  6 h 6 p 1  and  φh :  Cp ! Cp is  given  by  φh (x)  =  xh . Then writing Cq = hy | yq = 1i we have a non-trivial homomorphism ✓ : Cq ! Aut(Cp) given by ✓(y) = φh , now

Cp o Cq = hx,y | xp = 1 = yq , yx = xhyi,

is a non-abelian group of order pq.  [4 marks]

(d)  Classify all groups of order 4907 explaining clearly all steps of your argument . We have 4907 = 7 ⇥ 701 and 701 is prime and 7  | 700 .  So using the previous part we know this is a semi-direct product and either it is trivial and we get C4907  or it is non-trivial .

We need to check that the non-trivial semi-direct products are all isomorphic . We have Aut(C701 ) = C700  and we can check that φ2  : C700  ! C700 , φ2 (x) = x2 generates Aut(C700 ) .  (Since 700 = 22 ⇥ 52 ⇥ 7 it is sufficient to verify that none of 2700/2 , 2700/5 , 2700/7  equal 1 modulo 701 .)

We then need to identify all non-trivial homomorphisms ✓ : C7  ! Aut(C701 ) =    C700 . We must have ✓(y) is an element of Aut(C701 )of orderdividing7, soeither    ✓ is trivial or ✓(y)has order7 .  In which case ✓(y) = φ2(100) ,  φ φ φ φ Since φ2(100)  = φ19  this yields six non-abelian groups of the form

hx,y | x701  = 1 = y7 , yx = x19jyi,  j = 1, . . . , 6.  [6 marks]

However y 7! y19 is an automorphism of C7  (it is y 7! y5 ) hence by a result from lectures (Prop 8.5) on isomorphic semi-direct products these are all isomorphic. [3 marks]

 

3.  (a) Let G be a group of order 24. List all possible orders of the subgroups of G. A group of order 24 could have subgroups of order 1,2,3,4,6,8,12,24. [4 marks]

(b) Using Sylow’s theorem decide what are the possible values of n2  and n3  for G? Since 24 = 23  ⇥ 3 so n2  is the number of distinct subgroups of order 8, while n3  is the number of distinct subgroups of order 3. By Sylow n2  ⌘ 1mod2,

n3  ⌘ 1mod3, n2  | 3 and n3  | 8. So n2  = 1, 3 and n3  = 1, 4. [6 marks] (c) Classify all groups of order 24 with n2  = 1 and n3  = 1.

In this case the subgroups of order 3 and 8 are unique and hence normal. Moreover gcd(3, 8) = 1 so they meet trivially and 24 = 3 ⇥ 8 so G is a direct product of group of order 3 which must be C3  and a group of order 8 which can we any of C8 ,C2  ⇥ C4 ,C2(3),Q8 ,D8  so there are 5 possibilities. [5 marks]

(d) Using results from the course try to classify groups of order 24 with n2  > 1. [Write no more than three pages.]

[This question was beyond the level of examples seen in the course and meant to give those students who had mastered the course material the chance to shine.]

If n3  = 1 then G must contain a unique and hence normal subgroup isomorphic to C3 . Since it also contains a subgroup H of order 8 which meets C3  trivially so we recognise a semi-direct product: G = C3  oH, where H 2 {C8 ,C2  ⇥ C4 ,C2(3),Q8 ,D8 } and ✓ : H ! Aut(C3 ). Note that Aut(C3 )  C2  is generated by φ2  : x 7! x2 . Since n2  = 3 so ✓ must be non-trivial. We consider the five choices of H in turn. Note that since the 2-Sylow subgroups are all conjugate they are isomorphic so distinct choices for H give distinct groups G. The only isomorphisms will be between semi-direct products with the same 2-Sylow subgroups.

H = C8  = hy | y8  = 1i: ✓(y) = φ2  is the only non-trivial homomorphism and yields the group C3  oC8 .

H = C2  ⇥ C4   = hy,z | y2   = z4   = 1, yz = zyi: there are three non-trivial homomorphisms. Writing each in terms of the image of (y,z) we have ✓ 1  = (φ2 ,id), ✓2  = (id,φ2 ), ✓3  = (φ2 , φ2 ). In this case C3  o1   (C2  ⇥ C4 )  C3  o3 (C2  ⇥ C4 ). To see this let f : C2  ⇥ C4  ! C2  ⇥ C4  be defined by f(y) = y, f(z) = yz. Then we can check this defines an automorphism of C2  ⇥ C4  and ✓ 1  = 3 ◦ f. So Prop 8.5 from lectures tells us they are isomorphic.

We need to justify why C3  o1   (C2  ⇥ C4 )  C3  o2   (C2  ⇥ C4 ). To see this note that ker(✓1 ) = hzi  C4  while ker(✓2 ) = hy,z2 i  C2  ⇥ C2 . So the former semi-direct product contains elements of order 12, such as xz, while that the later does not.

H = C2(3)  = ha,b,c | a2  = b2  = c2  = 1, ab = ba,ac = ca,bc = cbi: there are seven non-trivial homomorphisms given by deciding whether or not each of a,b,c is mapped to φ2  (at least one of them must be for the homomorphism to be non-trivial). Writing each homomorphism in terms of the images of a,b,c we have ✓ 1  = (φ2 ,id,id), ✓2  = (id,φ2 ,id), . . . , ✓6  = (id,φ2 , φ2 ), ✓7  = (φ2 , φ2 , φ2 ). It is easy to see that C3  o1   C2(3)    C3  o2   C2(3)    C3  o3   C2(3)  and C3  o4   C2(3)   C3  o5  C2(3)   C3  o6  C2(3)  via permutations of a,b,c (these are automorphisms of C2(3)). Also C3  o1  C2(3)    C3  o4  C2(3)  via the automorphism (a,b,c) 7! (a,ab,c). Lastly C3 o1 C2(3)   C3 o7 C2(3) via the automorphism (a,b,c) 7! (a,ab,ac). Thus all seven non-trivial semi-direct products are isomorphic.

H = D8  = hy,z | y2  = z4  = 1, zy = y3 zi: as in the case of H = C4  ⇥ C2  there are three non-trivial homomorphisms: ✓ 1  = (φ2 ,id), ✓2  = (id,φ2 ), ✓3  = (φ2 , φ2 ). In this case C3  o2  D8   C3  o3  D8 . To see this let f : D8  ! D8  be defined by f(y) = yz, f(z) = z. Now ✓3 ◦ f = ✓2  and we can check that f 2 Aut(D8 ).   To see why C3 o 1 D8   C3 o2 D8 note that ker(✓1 ) = hzi  C4 while ker(✓2 ) = hy,z2 i  (C2  ⇥ C2 ). So the former semi-direct product contains elements of order 12, such as xz, while that the later does not.

H = Q8  = hy,z | y4  = 1, y2  = z , zy = y zi23 . As in the cases of H = C4  ⇥ C2 and H = D8  there are three non-trivial homomorphisms: ✓ 1  = (φ2 ,id), ✓2  = (id,φ2 ), ✓3  = (φ2 , φ2 ). In this case they are all isomorphic. If f,g : Q8  ! Q8 f(y) = z, f(z) = y and g(y) = y, g(z) = yz, then f,g 2 Aut(Q8 ) and ✓1 ◦f = ✓2 while ✓3 ◦ g = ✓ 1 .

Overall we have identified 7 isomorphically distinct groups with n2   > 1 and n3  = 1.

We now consider n2  > 1 and n3  > 1 so n2  = 3 and n3  = 4. We will show that in this case G  S4 .

Let the 3-Sylow subgroups be S3 (G) = {P1 ,P2 ,P3 ,P4 }. Consider the action of conjugation by G on S3 (G). Sylow’s theorem tells us these subgroups are all conjugate so there is a single orbit of size 4 and so the Orbit-Stabiliser theorem tells us that for any P 2 S3 (G) the stability subgroup GP = {g 2 G | gPg1  = P} has order 24/4 = 6.

Consider the group homomorphism associated to this action, given by φ : G ! S4   (so we interpret the action of a single group element g 2 G as a permutation of S3 (G) which in turn we view as a permutation in S4 ). If we can show that K = ker(φ) = {1} then φ is injective and hence (since |G| = 24 = |S4 |) surjective and so G  S4 . For any P 2 S3 (G) we have ker(φ) ✓ GP = {g 2 G | gPg1  = P} so in particular for any 1 6 i < j 6 4 we have K / GPi  \ GPj .

For any 1 6 i < j 6 4 we know |GPi  \ GPj | = 1, 2, 3 or 6. If it ever has order 3 or 6 then by Sylow’s theorem it has a subgroup Q of order 3. But then Pi ,Pj are also subgroups of order 3 of GPi  \ GPj   hence, since 3-Sylow subgroups are conjugate, we have Pi  = Q = Pj . a contradiction.

Moreover if |GPi  \ GPj | = 1 then, since K is a subgroup of this group, |K| = 1 and we are done, so we may suppose that |K| = 2 and |GPi  \ GPj | = 2 for all 1 6 i < j 6 4.

Now for any P 2 S3 (G) we have K / GP  and GP  has order 6 so is either S3  or C6 . If GP   S3  then K / S3  but S3  has no normal subgroup of order 2. So we must have GP   C6 for each P 2 S3 (G). Hence each GP   C6 contains exactly two elements of order 6. Each element of order 3 or 6 belongs to a unique GP (since the intersection of any pair of stability subgroups has order 2 and so contains no elements of order 3 or 6) so G contains 2 ⇥ 4 = 8 elements of order 6 and also 2 ⇥ 4 = 8 elements of order 3. But now the remaining 8 elements of G must form a unique 2-Sylow subgroup and n2  = 1, a contradiction.

Thus |K|  2 and so |K| = 1, hence K = {1} and so φ is an isomorphism and G  S4 .

[10 marks. Full marks would have been given for either half of this answer.]

 

4.  (a) Prove that p(x) = x3 +9x2 +18x +13 is irreducible over Q.

Let p(x) = x  +9x  +18x+13 and note that p(x32 − 1) = x  +6x  +3x+332 . Now Eisenstein applied to s(x) = x  +6x  +3x+3 with32 p = 3 says that s(x) has no proper factorisation over Z and hence, since p(x) = s(x +1), we see that p(x) has no proper factorisation over Z. Hence, since p(x) is primitive (since it is

monic), Gauss’s Lemma then implies that r(x) is irreducible over Q. [5 marks] (b) Factorise x24 − 1 into monic irreducibles over Q, explaining carefully why each

factor is irreducible.

We use the theorem from lectures on cyclotomic polynomials: xn −1 =Qd|n Φd (x) so

x24 − 1 = Φ1 (x)Φ2 (x)Φ3 (x)Φ4 (x)Φ6 (x)Φ8 (x)Φ12 (x)Φ24 (x).

We know all of these polynomials from lectures except the Φ6 , Φ12 , Φ24 . More precisely we have Φ1 (x) = x − 1, Φ2 (x) = x +1, Φ3 (x) = x2 + x +1, Φ4 (x) = x2 +1, Φ8 (x) = x  +14 . We then find Φ6 (x)(x− 1)(x+1)(x2 +x+1) = x6 − 1 so Φ6 (x) = x2 − x+1. Next Φ12 (x)(x− 1)(x+1)(x  +x+1)(x  +1)(x222 − x+1) = x12 − 1 so Φ12 (x) = x4 − x2 + 1. Finally we can obtain Φ24  by dividing x24 − 1 by the product of the other terms: Φ24 (x) = x8 − x4 +1. So

x24 −1 = (x−1)(x+1)(x +x+1)(x +1)(x x+1)(x +1)(x x +1)(x x +1)22244284 . [5 marks]

We claim these terms are all irreducible over Q. Clearly x ± 1 is irreducible since it is linear. The next three terms are all quadratics with no real roots and

hence irreducible over Q.  Finally we need to show that  Φ8 (x) , Φ 12 (x) , Φ24 (x) are irreducible over Q.  [2 marks]

For  Φ8 (x)  =  x4  + 1  we  use  Eisenstein  with p  =  2  applied  to  Φ8 (x + 1)  = x4 +4x3 +6x2 +4x +2 .  [2 marks]

A very  reasonable way  to  complete this  question  would  be to  prove that  all cyclotomic polynomials are irreducible over Q but we can also do this directly in these last two cases .

Since  Φ 12 (x)  =  x4  − x2  + 1  is  primitive  it  is  sufficient to  show  irreducibility over Z.  Now Φ 12 (x) has no integer roots (it is always at least 1 at any integer x)  so  if it  is reducible over Z then  it has  a factor x2  + ax + b.   Since  Φ 12 (x) is even either a = 0 or x2  − ax + b is a distinct factor in which case Φ 12 (x) = (x2 +ax+b)(x2 −ax+b) .  In the former case we have x4 −x2 +1 = (x2 +b)(x2 +c) and  so  bc =  1  and  b + c =  −1  with  b,c 2 Z but  this  is  impossible,  so  the latter factorisation must hold .  Equating coefficients in this case:  b2  =  1 and −1 = −a2 +2b.  So b = ±1 and a2  = −1 or a2  = 3, neither of which are possible . So  Φ 12 (x) is irreducible over Z and hence  also over Q by  Gauss’  Lemma .   [2 marks]

We can use a similar approach for Φ24 (x) = x8  − x4 + 1 .  Again Φ24 (x) has no integer roots and is even so if it is reducible over Z then it has a factor f(x) of degree at least two and at most 4 .  Let f(x) be a non-trivial factor of minimal degree .    If  deg(f)  =  3  then  f(−x)  is  a  distinct  factor  (cubic  polynomials cannot  be  even)  so  Φ24 (x)  =  f(x)f(−x)g(x)  and  deg(g)  =  2,  contradicting the minimality of deg(f) .

We would now like to assume that Φ24 (x) factors into two quartics, but we rst need to consider the possibility that it factors into an even quadratic:  x2 + a and  a  sextic  x6  + bx5  + cx4  + dx3  + ex2  + fx + g,  with  a,b,c,d,e,f,g  2 Z. Equating  coefficients  we  have  b  =  d  =  f  =  0,  a + c  =  0,  e + ac  =  −1, g + ae = 0,  ag =  1 .   Now ag =  1   =) a = g =  ±1 .   If a =  1 then  c =  −1 so  e =  0  and  hence  g =  0  which  is  impossible .   Similiarly  if a =  −1 .   Thus we have a quartic factor f(x) which is either even or if not f(−x) is a distinct factor .  Thus there are two more cases:  Φ24 (x) = (x4 + ax2 + b)(x4 + cx2 + d) or Φ24 (x) = (x4 + ax3 + bx2 + cx + d)(x4 − ax3 + bx2 − cx + d) .  In the former case we have bd = 1, ad+bc = 0, c+a = 0 and −1 = b+d+ac.  Which implies a2  = −1 or a2  = 3 which is impossible .

So we have x −x +1 = (x +ax +bx +cx+d)(x −ax +bx −cx+d)84432432 .  Equating coefficients of even powers of x we have d2  = 1, 2bd = c2 , −1 = 2d − 2ac + b2 , 2b = a2 .   Since a,b,c,d 2 Z so  2b = a2  implies a is even and hence b is even but then 2d − 2ac + b2  = −1 is also even, a contradiction .

So  Φ24 (x) is irreducible over Z and hence  also over Q by  Gauss’  Lemma .   [3 marks]

(c)  Identify all possible isomorphisms between the following quotient rings:

F5 [x]/(x2 + x +1) ,    F5 [x]/(x2 + x +2) ,    F5 [x]/(x2 + x +3) .




We rst need to identify which of these are integral domains (and hence elds so isomorphic) .  We note that x2 + x + 1 and x2 + x + 2 are both irreducible over F5  (since they have no roots), while x2 +x+3 = (x+4)(x+2) .  Hence the first two are both elds  (and isomorphic) while the last one is not an integral domain .

We now identify all isomorphisms between the rst two .

Elements  of both  elds  can  always  be  expressed  as  polynomials  of the  form ax+b where a,b 2 F5 .  Since both contain F5  any ring homomorphism must x F5 .  Given a homomorphism φ we must have φ(ax+b) = aφ(x)+b.  So to specify an isomorphism it is sufficient to nd the image of x.  Suppose φ(x) = ax + b, where φ : F5 [x]/(x2 +x+1) ! F5 [x]/(x2 + x +2) is an isomorphism .  We must have a  0 since φ(b) = b.  Also φ(x2 + x + 1) must be zero in the image, i .e . it must be a multiple of x2 + x +2 .  So there is c 2 F5  such that

c(x2 + x +2) = φ(x2 + x +1)    =    φ(x)2 + φ(x)+1

=    (ax + b)2 +(ax + b)+1                 =    a2 x2 +(2ab + a)x +(b2 + b +1) .

So c = a2  = 2ab + a and  2c = b2  + b + 1 .   Now the squares in F5  are 0 , 1 , 4, but  c = 0 implies  a = 0 which is impossible .   If c =  1 then  a =  1 or  a = 4 . If a = c =  1 then  b = 0 which is impossible, while  c =  1  and  a = 4 implies 1  = 3b + 4 so  b = 4 but  again this is impossible .   So we must have  c = 4 in which case a = 2 or a = 3 .  If a = 2 then b = 3 and if a = 3 then b = 1 both yield isomorphisms:  φ1 (↵x+β) = 2↵x+3↵ +β and φ2 (↵x+β) = 3↵x+↵ +β . To  see  that  these  are  indeed  isomorphisms  simply  note  that  φ2   =  φ1(−)1 .    [6 marks]