Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

EE466/EE966/EE875 Coursework Assessment Part 2:

Power Electronics Section

Introduction

The objective of this coursework exercise is to consolidate the lecture material that you have received, and to bring together associated engineering topics that relate to the analysis and design of power electronic circuitry.

Another important objective is to assist you in the development of transferable skills, such as report writing, presentation of technical material, and examination technique.

The Assessment

The assessment consists of three questions where all of the material has been covered to greater  or  lesser  degrees  during  lectures.  All  questions  should  be  answered  for maximummarks, and be careful to ensure you have attempted all parts of each question. Whilst   some   questions   are   straightforward,   others   are   designed   to   test   your comprehension beyond what has been explicitly covered in the class.

Submission

•   You must submit a computer-processed report with the solutions.

•   Your submission must include a cover sheet (free format).

•   When including your name on the cover sheet, it must be presented in the order:

First Name  Family Name

•    If your solutions require graph solutions, you should include the plots in the report.

•   Your solutions should resemble ‘specimen solutions’, i.e. the type of solution that you may expect to see in a textbook.  Solutions must be clearly presented, legible, and concise. You should show all of your mathematical working. Diagrams and graphs must be clear and contain all of the relevant information.

•    In  order  to  answer  some  of  the  questions,  it  will  be  necessary  to  consult background material. We expect the student to use resources like IEEE Explore, IET library, Elsevier library or the University library instead of Wikipedia. A list of references should be added to the coursework where appropriate.

•   Students should take responsibility for observing the university regulations on plagiarism.

•   Your  completed  assessment  must  be  submitted  online  by  12  noon  on Monday 18 March.

•   YOUR UPLOADED DOCUMENT MUST BE IN PDF FORMAT.

QUESTION 1

Q1    An IGBT and a diode forming a power converter are mounted onto a

heatsink. Thermal data for this arrangement are given in Table Q1. The ambient temperature Tamb  is 40°C.

Table Q1.

 

IGBT

Power dissipation WIGBT in IGBT

12 W

Junction to case thermal resistance Rθjc

0.6°C/W

Case to heatsink thermal resistance Rθchs

1.4°C/W

 

 

 

 

Diode

Power dissipation WDIODE  in diode

7 W

Junction to case thermal resistance Rθjc

0.9°C/W

Case to heatsink thermal resistance Rθchs

1.5°C/W

 

 

 

Heatsink

Heatsink to ambient thermal resistance Rθhsa

3.2°C/W

Thermal capacitance Cθhs  of heatsink

280 J/°C

Q1a         i.         Sketch a clearly-labeled thermal circuit.

ii.        Calculate the steady-state temperature of the diode and IGBT junctions.

iii.       Calculate the heatsink’s temperature three minutes after the   circuit is de-energised after it has been running in the thermal steady-state.

13 marks

Q1b   You have designed a buck converter, and as part of the design validation

programme you need to experimentally measure the converter’s switching

losses. Thermal superposition measurements or double-pulse testing can be

used for this. Describe how these techniques work, and discuss their advantages and limitations.

12 marks


QUESTION 2

Q2a       i.      Transformers in switched-mode power converters often use ferrite

core materials. Alternatively, nanocrystalline materials can be used in this application. Discuss the relative merits and demerits of ferrite

and nanocrystalline core materials when used in a power converter’s transformer.

ii.     Chokes in switched-mode power converters often also use ferrite  core materials. Alternatively, iron powder materials can be used in this application. Discuss the relative merits and demerits of ferrite  and iron powder core materials when used in a power converter’s  choke.

8 marks

Q2b   Figure Q2b shows a rectifier circuit using a thyristor. The AC supply voltage

vac is 230 V, and RLOAD has a resistance of 500 Ω. Calculate the average value of iLOAD  if the thyristor is triggered at an angle α of 65° .

Figure Q2b. Rectifier circuit.


7 marks

Q2c   A MOSFET is mounted onto a heatsink, and data for this arrangement are

given in Table Q2(c). The MOSFET switches at a very low frequency and   hence its switching losses can be neglected, and the only significant losses are its conduction losses. Calculate the MOSFET’s junction temperature.

Table Q2(c). Data for MOSFET mounted on heatsink.

Ambient temperature

Tamb

20°C

MOSFETs RDS(on) when at 20°C

RDS(on)20

25 mΩ

RMS current conducted by MOSFET

Irms

16 A

Total thermal resistance between MOSFET junction and ambient

Rθ

7°C/W

Coefficient of rise in RDS(on)  with temperature

kθ

1.1%/°C

When answering this question, consider that a positive feedback mechanism must be present because:

•    The power dissipation in the MOSFET causes a rise in its junction temperature and;

•    The rise injunction temperature increases the MOSFET’s RDS(on),thereby causing its power dissipation to increase.

In your answer it is suggested that you sketch a block diagram with the variables in Table Q2(c) interconnected, and use simple feedback controltheory to calculate the temperature.

10 marks


QUESTION 3

Q3    Figure Q3(a) shows a dual-switch forward converter. The input voltage Vin is 48 V, and the output voltage Vout  is 14 V. Other data are given in

Table Q3(a).


Figure Q3(a). Dual-switch forward converter.

Table Q3(a). Data for circuit in Figure Q3(a).

Full-load output power

50

W

Switching frequency

120

kHz

L1 inductance

180

µH

Transformer T1 turns-numbers N1:N2

32:26

-

The transformer is constructed around EFD30 ferrite half-cores in 3C90

material. The manufacturer’s data sheet should be consulted to obtain data:

http://ferroxcube.home.pl/prod/assets/efd30.pdf

Q3a   Calculate the following quantities:

i.         the duty factor at which the converter operates when it is running in the continuous current mode;

ii.        the minimum voltage that diode Dr  must be able to support;

iii.       the output power at which the converter will enter the boundary conduction mode;

iv.       the flux density swing in the transformer’s core material;

v.        the peak magnetizing current drawn by the transformer.

10 marks


Q3b   TR1 and TR2 in Figure Q3(a) are normally driven on simultaneously by

applying a positive gate-source voltage to each of them. As seen in

Figure Q3(b), driving the lower device, TR2, directly from a low-voltage control IC connected to 0 V is relatively straightforward.

However, there is a difficulty with driving the upper device, TR1, as its source  voltage swings between 0 V and 48 V. TR1 therefore cannot be driven directly from the output terminal of a low-voltage control IC connectedto 0 V.

With the aid of sketches, explain how circuitry using a bootstrap diode, flying capacitor, high-voltage level-shifting MOSFET and a driver IC can be incorporated to enable TR1 to be driven from the low-voltage control circuitry.

Figure Q3(b). Primary side circuitry of dual-switch forward converter in Figure Q3(a).

8 marks

Q3c   Redraw the circuit in Figure Q3(a), but with the arrangement formed by Dr and

Df replaced with an arrangement of MOSFETs acting as synchronous

rectifiers. Explain what the benefits of this latter arrangement are, and how it operates. Sketch waveforms in your answer as appropriate.

7 marks