Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Mechatronics 5CCE2MCT Individual Coursework Project

Design Analysis of a Two-aris Camera Gantry System

You are a mechatronics design engineer working for a firm that specialises in developing custom components for cinematic production.Your manager has sent you a parametric model of a two- axis gantry mechanism that was developed on a previous project.The gantry can move a camera both horizontally and vertically by rotating lead screw mechanisms attached to runners.

Brief

Your manager has asked you to design a new electromechanical actuation system composed of two geared DC motors that drive the leadscrew runners of the two-axis gantry system shown in Figure  1.She  provided  CAD  components  and  Simulink  starter  models  for  the  assembly,n.b. these files can be downloaded from the KEATS module page in the MATLAB project archive, camera_gantry.mlproj.She has also sent you a list of requirements that she has discussed with the customer appended to the end of this document.She encourages you to use the model as a starting point and welcomes further input on how to improve the mechanical design.

You are responsible for:

· specifying  DC  motor,power  supply,and  gearbox  characteristics

·  design a digital motor controller

· demonstrate the effectiveness of your design.

You are highly encouraged to brainstorm additional information about the context in which this mechanical system is to be used.

Deliverables

· a 3-minute video recording in which you present the motor and mechanism design to an engineering design team.The video should contain an animation of the mechanism and an overview of the Simulink model and results.

· a l-page written report presenting the results of your design analysis with a maximum of 2 page of supporting figures in appendix

· zip and upload Simulink model to KEATs

Learning   objectives

·  Model the electromechanical system that actuates the gantry using a combination of mathematical,physical and data-driven methods and critique the choice of your modelling approach

·  Specify component parameters based on a design analysis of system requirements ·  Implement and tune a feedback controller to control position and speed of the mechanism

· Test the controller design against multiple loading scenarios

·  Conduct a design space study to optimise system-level performance

· Report and justify recommended design implementation

Additional resources

You are encouraged to complete laboratory exercises of weeks 22-26 to develop skills in modelling and control of mechatronics systems.

Marking Criteria

Individual  coursework  submission  accounts  for  30%of module  grade.

Your submission will be scored with regards to its merits in six core areas:

Area

Actions

Justify modelling and control design approach

Science  &

Mathematics

Interpret design performance using mathematical and statistical techniques

(20 marks)

Critique choice for actuator and sensor characteristics and technology

Engineering

Apply engineering tools to solve the design task

Analysis

Conduct critical analysis to identify,classify and describe system performance

(20 marks)

compared to benchmark

Adopt systems approach to improve on design

Extract and evaluate pertinent data to solve unfamiliar problems

Engineering

Evaluate user needs and requirements

Design

Identify and work with design constraints and unknowns

(20 marks)

Communicate to a technical audience

Deliver efficient,effective and robust design

Engineering Context

(10 marks)

Identify and mitigate areas of risk

Engineering      Demonstrate design effectiveness in the context in which the system is applied

Practice

(20 marks)

Additional         Demonstrate effectiveness,clarity and originality of communication

General

skills

(10 marks)

Requirements

Your  manager  discussed  these  requirements  with  the  customer.You  are  welcome  to  add  you own  requirements  to  this  initial  draft.

Battery /Power Supply Requirements

Battery  Voltage:5-12V

Battery  Capacity:2-5  Ah

Battery Resistance:0.1-1 Ω

Battery Lifespan:15-20 minutes

You can use 18650 Li-lon batteries (example'

Battery  Voltage:3.7V  per  battery*

Battery  Capacity:2.6  Ah

Battery  Resistance:250  m2 per battery

*n.b.1 battery  is  3.7V(1S),2  batteries  is  7.4V(2S),3 batteries  is  11.1V  (3S)and  so  on.


Lead    Screw

Linear travel per revolution of the screw 5-20 mm**

**n.b.parameter  saved  as leadScrew.lead        =10;  in the gantryParams.m script

DC Motor Requirements

Stall  current:0.2A-1A

Stall torque:500 g.cm

No-load speed:7000-21000 rpm

Motor Sensor Requirements

Hall Sensor Encoder with 24 counts per revolution

Gantry Lift Requirements

Lift a camera payload weight of 10-20 kg

Camera Safety Requirements

No collisions with frame

Fail safe mechanisms for operation and calibration

Maximum acceleration of 30 m/s²

Camera Manipulation Requirements

Cover an area of 0.75 by 0.4 m²

Maximum jerk of 10 m/s3***

Suggestion:  As the jerk is the derivative of the acceleration,this result is sensitive to the filtering of the acceleration signal. Use a first-order filter with time delay constant of 0.01 s when you take the derivative

System Response Requirements

Rise time<3-5 s per  100 mm travel

Settling time<5-7 s per  100  mm travel

Overshoot  <2%

Undershoot<2%

Steady-state    error<2%

Suggestion:  Perform a step-response between the two ends of the frame.

Tracking      Response      Requirements

Relative    error<3%

Absolute error <3%

Suggestion:   Perform a tracking-response using a sine wave or polynomial trajectory.