Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

FORMAL EXAMINATION PERIOD: SESSION 1, JUNE 2018

ECON334

Financial Econometrics

Part A Multiple Choice Questions (20 in total, 1 mark each)

Question 1

The ACF and PACF of a time series are shown in the following graph. They indicate that the

model for the time series is best characterised as:


0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

acf


(a)       MA(1)

(b)       AR( 1)

(c)       MA(2)

(d)       AR(2)

(e)       ARMA(1,1)

Question 2

Suppose that you have estimated the first five autocorrelation coefficients using a series of length 81 observations and found them to be

Lag

1

2

3

4

5

Autocorrelation Coefficient

0.412

-0.203

-0.332

0.005

0.543

Which autocorrelation coefficients are significantly different from zero at the 5% level?

(a)        The first and fifth autocorrelation coefficient

(b)       The first, second, third and fifth autocorrelation coefficient

(c)        The first, third and fifth autocorrelation coefficient

(d)       The second and fourth autocorrelation coefficient

(e)       The fourth autocorrelation coefficient


Question 3

Find the roots of the characteristic polynomial of the AR(2) process given by

yt = 3yt1 − 2yt2 + ut , where ut is a white noise process. Using the results of your calculation, which of the following statements about the process is true?

(a)       the roots are 1 and 0.5, so the process is stationary

(b)       the roots are 1 and 0.5, so the process is non-stationary

(c)       the roots are 2 and 1 so the process is stationary

(d)       the roots are 2 and 1 so the process is non-stationary

(e)       None of the above

Question 4

Consider the following bivariate VAR(2):

y1t = α10 + α11y1t 1 + α12y1t 2 + α13y2t 1 + α14y2t 2 + u1t

y2t = α20 + α21y1t 1 + α22y1t 2 + α23y2t 1 + α24y2t 2 + u2t

When y1    is said to Granger-cause y2   and y2   not to Granger-cause y1 , it is the case that:

(a) α13  and α14  significant; α21  and α22   not significant

(b) α21  and α22   significant; α13  and α14   not significant

(c) α21  and α23   significant; α11  and α13   not significant

(d) α11  and α13  significant; α21  and α23 not significant

(e)        None of the above

Question 5

What are the steps required to estimate an ARCH/GARCH model?

(a)        First specify the correlation and variance equations. The software (EViews in our

case) specifies the Log-Likelihood Function (LLF) and generates estimates of the parameters that maximise the LLF

(b)        First specify the correlation and variance equations. The software (EViews in our

case) specifies the Log-Likelihood Function (LLF) and generates estimates of the parameters that minimise the LLF

(c)        First specify the mean and variance equations. The software (EViews in our case) specifies the Log-Likelihood Function (LLF) and generates estimates of the            parameters that maximise the LLF

(d)        First specify the mean and variance equations. The software (EViews in our case) specifies the Log-Likelihood Function (LLF) and generates parameter values that  minimise the LLF

(e)        None of the above


Question 6

Which of the following can be regarded as an advantage of an EGARCH(1,1) model over a GARCH(1,1) model:

(a)        It has fewer parameters for estimation than a GARCH(1,1)

(b)        It has one less non-negativity condition on its parameters than does a GARCH(1,1)

(c)         It always provides an estimate of conditional volatility which is positive.

(d)        It treats positive and negative news shocks equally

(e)        None of the above

Question 7

Given the following forecasts and actual values of a return series what is the percentage of correct sign predictions?

Forecast

Actual

0.20

0.15

-0.20

-0.06

0.04

0.40

-0.20

0.10

-0.10

0.05

20%

(b)

(c)

(d)       80%

(e)       None of the above

Question 8

Consider the following process:

yt = 0.55 + 0.4ut2  + 0.2ut1 + ut

What is the optimal forecast of yt+3   made at time t, given that all information up to and       including time t is available; in particular that ut = 0.3, ut1  = −0.6, ut2  = 0.4 and ut3  = 0.8.

(a)       1. 15

(b)       0.73

(c)       0.55

(d)       0.67

(e)       0.80

Question 9

Consider the following process:

yt = 1.0 + 0.5yt1 + 0.3ut2  + 0.2ut1 + ut

What is the optimal forecast of yt+2 , given that all information up to and including time t is available; in particular, it is known that yt = 0 , ut = 0.3, ut1  = 0.6, and ut 2  = 0.4 ?

0.54

1.24

1.71

2.00

Question 10

The random variable yt follows the ARMA(2,1) process given by:

yt = 5 + 0.3yt1 + 0.2yt2  + ut + 0.5ut1  where ut is a white noise process. The optimal forecast of yt+j as j becomes very large (i.e. as j → ∞)  is:

(a)       0.0

(b)        1.0

(c)        5.0

10.0

(e)       a very large number (i.e. yt+j → ∞)

Question 11

What is an appropriate approach to testing for ‘ARCH effects’?

(a)        Run a regression, save the residuals, regress the squared residuals on their lags and

conduct a hypothesis test to see whether the coefficients on the lagged squared residuals are jointly equal to zero

(b)         Run a regression, obtain the fitted values, regress the fitted values on their squared

lags and conduct a hypothesis test to see whether the coefficients on the lagged squared fitted values are jointly equal to zero

(c)        Run a regression, save the residuals, regress the residuals on their lags and conduct a hypothesis test to see whether the coefficients on the lagged residuals are jointly    equal to zero

(d)        Run a regression, obtain the fitted values, regress the fitted values on their lags and conduct a hypothesis test to see whether the coefficients on the lagged fitted values are jointly equal to zero

(e)        None of the above


Question 12

Suppose two variables are cointegrated with each other. Which of the following statements is true?

(a)       there is a linear combination of the two variables which is stationary

(b)       all linear combinations of the two variables are stationary

(c)       there is no linear combination of the two variables which is stationary

(d)       one of the two variables is stationary, the other is non-stationary

(e)       none of the above

Question 13

Consider the process yt = θut1 + ut where ut is independently and identically distributed with mean zero and variance σ2   for all t. Which of the following statements is true:

(a) yt and ut are both white noise processes

(b) yt is a white noise process but ut is not

(c) ut is a white noise process but yt is not

(d) yt and ut are both serially correlated processes at all leads and lags (e) yt and ut are serially uncorrelated processes at all leads and lags

Question 14

Consider an AR(1) – ARCH(2) model of returns, given by:

yt = c + φyt1 + ut

σt = α0 + α1ut1 + α2ut2

What are the conditions that need to be satisfied to ensure that u has a

variance?

(b) α0  ≥ 0, α1  ≥ 0, α2  ≥ 0, α1 + α2  < 1

(c) α0  ≥ 0, α1  ≥ 0, α2  ≥ 0, α0  + α1 + α2  < 1

(d) α0  > 0, α1  ≥ 0, α2  ≥ 0, α1 + α2  < 1

(e) φ> 0, α1 + α2  < 1


Question 15

A researcher would like to run an augmented Dickey-Fuller test on the variable yt . What is the regression that would be estimated and what is the null hypothesis (H0 )  of the test?

(a) yt =ψyt 1 + αi yt i + ut and H0  :ψ = 0 , respectively

(b)        ∆yt =ψyt 1 + αiyt i + ut and H0  :ψ = 1 , respectively

(c)        ∆yt =ψyt1 + αi yti + ut and H0  :ψ = 0 , respectively

(d)        ∆yt =ψyt 1 + αi yt i + ut and H0  :ψ = 1 , respectively

(e) yt =ψyt1 + αiyti + ut and H0  :ψ = 0 , respectively

Question 16

A stationary ARMA(1,1) process would have the following characteristics:

(a)       the ACF and PACF coefficients are significant at lag 1 and then decay (b)       the ACF and PACF coefficients are not significant at any lag

(c)       the ACF and PACF coefficients are significant at lag 1 and then the PACF coefficients decay while the ACF coefficients drop to near zero

(d)       the ACF and PACF coefficients are significant at lag 1 and then the ACF coefficients decay while the PACF coefficients drop to near zero

(e)       the ACF and PACF coefficients are close to one and are significant at all lags

Question 17

Consider the ARCH(2) model for conditional variance given by

σ = ω + α u + α u

where ut is the residual from a regression equation (i.e. the mean equation) at time t . We have the following parameter estimates ω = 0.06 , α1  = 0.3 , α2  = 0.2 , and we are given u1  = 0.4 and u0  = 0.3 . Calculate the conditional variance at time t=2 (i.e. σ2(2) ).  The correct answer is given by:

(a) 0.126

(b) 0.240

(c) 0.168

(d) 0.198

(e) 0.060


Question 18

Which of the following can be regarded as a limitation of the standard GARCH(1,1) model:

(a)        It has fewer parameters to be estimated than does a typical ARCH(p) model

(b)         It provides an estimate of unconditional volatility but not of conditional volatility

(c)         It gives more weight to negative news shocks than to positive news shocks

(d)        It gives equal weight to both positive and negative news shocks

(e)       None of the above

Question 19

We wish to apply the F-test in order to test H0: F3  + F4  = 2 in the following regression Yt  = F1  + F2X2t+ F3X3t+ F4X4t  + ut .

If the restricted regression equation utilised by the F-test is given by

Zt  = F1  + F2X2t  + F3Wt  + vt

what are the Zt  and t  variables?

(a)    Zt  = 2Yt X4t , t  = X3t 2X4t

(b)    Zt  = Yt 2X4t , t  = X3t X4t

(c)     Zt  = Yt X4t , t  = 2X3t X4t

(d)    Zt  = Yt 2X2t , t  = 2X3t X4t

(e)     None of the above

Question 20

Which of the following can be used to test for non-normality in the residuals from a regression?

(a)       LM (Breusch-Godfrey) test

(b)       Dickey-Fuller test

(c)         Ramseys RESET test

(d)       Jacque-Bera test

(e)       None of the above


Part B SHORT ANSWER QUESTIONS

Answer four out of five short answer questions in the examination booklet provided.

Question 1

This question is regarding the following equation: Yt  = F1  + F2X2t  + F3X3t  + ut .

–    T = 15

(XX)− 1 = l  3.5

(Xy) = l 2.2 |

3.5

1.0

6.5


6.5 |


Given the information provided above answer the following questions.

(a)    What is the value of F̂2 ?  (2 marks)

(b)     Compute Var(F̂2 ) the variance of F̂2 .  (2 marks)

(c)     Test H0: F2  = −4 vs. H1: F2 ≠ −4 using the 5% significance level.  (1 mark)

Question 2

The following questions relate to the classical linear regression model (CLRM) assumptions

(a)     What does the assumption Var(ut) = a 2  (for all t) imply about Var(u) – the variance

matrix of the residuals vector u . Given an example of Var(u) which satisfied the assumption.   (2 marks)

(b)     Which of the CLRM assumption is tested using the Breusch-Godfrey test? Specify the

null and alternative hypothesis used in the test, and outline how the test is conducted (including the distribution of the test statistic).  (2 marks)

(c)     How can we test  E(ut) = 0?  (1 mark)

Question 3

(a)     What is meant by cointegration? Describe in detail the Engle-Granger test for

cointegration between two variables. Be sure to explain each step of the test. (3 marks)

(b)     What is meant by a spurious regression? How would you detect that the results from a

regression between two variables are spurious?  (2 marks)

Question 4

You have data for the return on a weighted portfolio of all the stocks in the market. The      return series is denoted MKT and the sample is daily from 3 January 2010 to 29 December 2017. The total number of daily observations is 2,013. You decide to estimate the mean     equation as an MA(1) and the variance equation as in the GJR model. Specifically, you      estimate the following model:

MKT = c + u + 9u

σt(2) = α0 + α1u1 + βσt21 +γu1It1

where It 1 = 1 if ut 1 < 0 and = 0 otherwise.

You estimated this model in EViews and obtained the following results.

Dependent Variable: MKT

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Sample: 1/04/2010 12/29/2017

Included observations: 2013

Convergence achieved after 28 iterations

Mean Equation

Coefficient

Std. Error

-Statistic

Prob.

c

0.049

0.015862

3.105341

0.0019

9

-0.037

0.020680

-1.822697

0.0683

Variance Equation

α0

0.034

0.0037             8.969

0.0000

α1

-0.035

0.0093 -3.625

0.0003

γ

0.259

0.0247           10.497

0.0000

β

0.859

0.0137           62.528

0.0000

R-squared Adjusted R-squared S.E. of regression   Sum squared resid Log likelihood          Durbin-Watson stat

0.0016 0.0011 0.9564 1839.6 -2415.2 2.0052