Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MAT3172, Spring-Summer 2023

Probability Foundations

Department of Mathematics and Statistics

Assignment 1, due on MAy 29,2023 at 11:59 in brightspace

Submission to my email or late submission will be ignored

1. Show that if H(x) > 0 is an increasing function of x then for a given random variable

X

E(H(X))

H(a)    .

2. If X > 0 is an integer valued random variables. Prove that

-

X =       I(X > n)

√=ò

and conclude that in this case

-

E(X) =       P (X > n).

√=ò

3. Let F be a σ-field of subsets of and suppose that B e F. Dene

g = {A n B : A e F}

is a σ-field of subsets of B .

4. Prove

●  (1) the Bonferoni’s inequality

P Ai > i1  P (Ai ) _ 1√ P (Ai n Aj )

●  (2)

P Ui Ai > 1 _   i    P (Ai(c)).

5. Explain why

I ni Ai = I(A1 ) + I(A2 )(1 _ I(A1 )) + I(A3 )(1 _ I(A1 ))(1 _ I(A2 )) + . . . .

Take expectation on both sides to generate a formula for P (ni Ai ) .

6. Assume P (X e [a, b]) = 1. Define the real valued function g(t) = E[(X _ t)2].

●  (i) Find the minimizer of g and conclude that     g(t) > Var(X).

Specially

g > Var(X).

●  (ii) Use part (i) and noticing that (X _ a)(X _ b) < 0 to conclude

(b _ a)2

4     .

7. Let X be a random variable such that, the moment generating function M(t) = E(et* ) < o, for t e (_h, h).

(i) Prove that

P (X > a) < e-at M(t), t e (0, h)

and

P (X < a) < e-at M(t), t e (_h, 0).

Conclude

P (X > a) < inf e-at M(t)

t<ò

when h = o.

(ii) For a random variable X the moment generating function M(t) exists for all t e R and

M(t) =

expìt/-expì -t/ 2t

1

if t 0

if t = 0,

show that

P (X > 1) = 0,  P (X < _1) = 0.

8. The probability measure P is defined by

P (A) =     exp(_x)dx.

A

If Ak  = (2 _ 1/k, 3] u {5, 6}, for k = 1, 2, . . ., then nd lim sup Ak  and lim inf Ak  and check if

lim P (A) = P (lim A).