Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

AMATH 351 Homework 5: Cauchy-Euler equation, nth order linear ODEs with constant coefficients, method of undetermined coefficients

Exercise  1:   Roots  of the  characteristic  equation.   The characteristic equation of a homogeneous linear ODE with constant coefficients can be written as

(r − 2)3 (r2 − 6r + 25)2 (r − 3)2  = 0

1. Determine the roots of the characteristic equation and their multiplicity.

2. Find the general solution of the ODE.

Exercise 2:  nth order homogeneous ODEs.

1. Find the general solution of the ODE:

y\\\ − 3y\\ + 4y\ − 2y = 0

Hint: One solution of the characteristic equation is r1  = 1. (since the sum of equation’s coefficients is zero).

2. Find the solution of the IVP

y\\\ − 5y\\ + 100y\ − 500y = 0,   y(0) = 0, y\ (0) = 10, y\\ (0) = 250, if we know that e5t  is one of the fundamental solutions of the ODE.

Exercise 3:  Non-homogeneous  Cauchy-Euler equation.    Consider the

equation

t2   + t  + y(t) = t, t > 0.                               (1)

1. By performing change of variable x = ln(t), see that ODE (1) is expressed equivalently as

d2 y(x)

dx2

2. Determine the general solution of the homogeneous equation that corre- sponds to ODE (2).

3. Find a particular solution of ODE (2) via the method of undetermined coefficients.

4. Determine the general solution y(北) of ODE (2).  Then, use  = ln(t) to return to the variable t, in order to determine the general solution y(t) of the original ODE (1).

Exercise  4:   Undetermined  coefficients  and  superposition  principle.

Using the method of undetermined coefficients, find one particular solution for each of the following non-homogeneous ODEs

1. y\\ − 3y\ + 2y = 2e2t

2. y\\ − 3y\ + 2y = 2sin(t)

By using the particular solutions you found in the previous questions, and by invoking the superposition principle, find one particular solution of the ODE:

3. y\\ − 3y\ + 2y = 2e2t + 2sin(t)