Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MATH256  Problem Sheet 6

6.1   (a)  Use the Lagrange interpolation formula to find the quadratic polynomial P (x) which satisfies P (x) = ex  for x = -1, x = 0 and x = 1.

(b)  Use the Lagrange interpolation formula to find the quadratic polynomial Q(x) which satisfies Q(x) = ex  for x = -^3/2, x = 0 and x =^3/2.

(c)  Plot graphs of the three functions

|ex - P (x)|,    |ex - Q(x)|   and    |ex - R(x)|

where R(x) is the three term Taylor series approximation to ex , i.e.

R(x) = 1 + x + x2

(d)  Using your graphs, estimate the maximum absolute errors in the three approximations.

6.2   (a)  Create a divided difference table for the following data:

    0.1     0.3  0.8  1.0

 -0.2  -0.4  1.0  0.2

Record each value in the table to six correct significant digits.

(b) Write down the Newton polynomial resulting from part (a) and calculate its value at x = 0.6.

(c) Add an extra row to the table from part (a), using the new data point x = 0.9, y = 0.4.  Then evaluate the revised Newton polynomial at x = 0.6.

6.3    (a)  Using Maple, generate an array containing 11 equally spaced nodes xj ,

with x0 = -1 and x10 = 1. Also generate an array of y values with yj  = cos(πxj ),    j = 0, 1, . . . , 10.

(b)  Using the procedures in d taX)mw, generate the Newton polynomial P such that P (xj ) = yj  for the eleven points in your array.  Plot the absolute error in the approximation cos(πx) ≈ P(x) for -1 s x s 1.

(c) Add the extra point (x11 , y11 ) = /0.1, cos(0.1π)  to the divided differ- ence table, and generate a new Newton polynomial Q(x) such that Q(xj ) = yj  and Q(0.1) = cos(0.1π).  Plot the absolute error in the approximation cos(πx) ≈ Q(x) for -1 s x s 1.

(d) Which of the approximations cos(πx) ≈ P(x) and cos(πx) ≈ Q(x) has the greater maximum error? Why do you think this happens?

6.4   (a)  Use the fact that Tn (cos θ)  =  cos(nθ) to simplify the  expression Tn /Tm (t).

(b)  Use Maple to check your result for several different positive values of n and m.

Hint: the shmpihey command will convert a Chebyshev polynomial to explicit form; for example try

shmpihey(  CfaXysfavT(  3  ( t  )  )

6.5  Use the fact that Tn (cos θ) = cos(nθ) to simplify the expression Tn-1 (t) + Tn+1(t). Hence prove that the leading order coefficient of Tn (t) is 2n-1 , for n > 0.

6.6    (a)  By differentiating the expression Tn (cos θ) = cos(nθ), find all points at

which T(t) = 0, for n > 0 .  Make sure you have the correct number of

results, and that none are repeated .

(b)  Do the results for θ = 0 and θ = π contradict the results of §4 .8 .3?

Why (or why not)?