Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

PHYS1160 Lesson Plan

Lesson 6 What are stars? An introduction into stars, including star formation and evolution.

Lesson learning outcomes:

By the end of this lesson, you should be able to:

1.   Explain key concepts such as luminosity, brightness, the inverse square law, parallax, thermal radiation, the magnitude system, and spectral classes.

2.   Explain and contrast the different evolutionary paths of stars and how this is related to stellar mass. Describe how we determine stellar mass.

3.   Summarise how stars form.

4.   Describe the different star clusters and how we can determine the age of a cluster.

5.   Outline the prevalence of binary stars in the Universe, the different types of binary star systems, and how they can influence the evolution of a star.

6.1 Stellar properties

Now that we have talked about galaxies and the Milky Way, it is time to zoom in on the objects that actually make up galaxies: stars! The above image captures much of what we will be discussing in this lesson: stars of different colours, brightness, sizes (in diameter and mass), and groups .

Luminosity and brightness

Luminosity and brightness are different things though they are often confused. We have talked about the difference between luminosity and brightness earlier. Recall our two light bulbs. They might be identical in their type, but if one is rated as 100 W and the other is rated at 200 W, when they are the same distance from us, the 200 W bulb will appear brighter. For them to have the same brightness, the 200 W bulb has to be further away. The same principle applies for stars.

Luminosity  is the  power produced  by a star.  Brightness, technically called apparent  brightness, is dependent on distance, and the amount of power from the star reaching us per unit area. Usually, we define this as power per square metre. It’s also known as the inverse square law. This sounds confusing but consider the image below.

Figure 15.2 from The Cosmic Perspective. The inverse square law for light: The apparent brightness of a star declines

with the square of its distance.

What the image and the inverse square law is telling us is that the same amount of power produced by the star is distributed over larger and larger spheres as the light radiates away from the star in all directions . Since the power is not changing, and the spheres are growing larger with distance, that means that the power per box area on the surface of the sphere must be decreasing. Think of pizza dough that starts off in a ball, but when you stretch it into a larger and


larger circle to make pizza, the dough becomes thinner and thinner. You only have a certain amount of dough to work with, but you are trying to distribute it over a larger and larger area. The same argument can be made here.

So, how do we actually measure apparent brightness? Well, let’s firstly look at what apparent brightness is again: it is the power per square metre (or unit area, which is a way of saying any area measurement that you want to use is okay!)

of star light. Power is a measure of energy per second. In the case of apparent brightness, we are talking about the energy of light per second that strikes sensitive detectors in the telescopes we use. We will learn more about telescopes in an upcoming lesson, but there are two details that you should note about telescopes: 1) the detectors cannot measure light over the whole electromagnetic spectrum , and 2) we  need different telescopes to observe  light at different wavelengths due to whether the light (at a particular wavelength) can travel through Earth’s atmosphere and the size of the telescope dish needed to capture certain wavelengths (for more, feel free to readthisor wait until we cover it later on). How does this relate to the apparent brightness of a star? Well, if we are measuring the energy of light per second striking telescope detectors, we can only do so in a small electromagnetic spectrum range, and therefore we can only calculate the luminosity of stars in that particular range. For example, optical telescopes (those with detectors sensitive to visible light) allow us to calculate the visible-light luminosity of stars. It is only if we account for photons across the entire spectrum that we can measure the total apparent brightness and calculate the total luminosity.

So, how do we measure distance? Recall earlier that we talked about parallax. Stellar parallax is the small shifts in a star’s apparent position caused by the Earth’s orbit around the Sun.

Now, we can actually measure p, the parallax angle. If stars are close enough such that we can actually observe and

accurately measure a star’s parallax angle, we can determine the distance to the star using the parallax formula. Interestingly, the distance unit parsec comes from combining parallax” and arcsecond”!

6.2 Magnitudes of stars

Ancient astronomers defined magnitude systems for stars, which designated the brightest stars in the sky as first magnitude”, the next brightest second magnitude”, etc., down to the faintest visible stars, which were sixth magnitude. This describes an apparent magnitude, because it assigns stars to magnitudes based upon how bright they appear in the sky.

This system is obviously fraught with possible errors and is quite subjective. Nowadays, astronomers use another magnitude system that is more precisely defined. Firstly, there are more than 6 magnitudes, and a difference in 5 magnitudes is a brightness difference of exactly 100, e.g., a magnitude 1 star is 100 times brighter than a magnitude 6 star. Of course, stars do not generally fall neatly into integer (whole number) magnitudes, and thanks to precise measurements, we can define magnitudes with decimal places. Sirius, the brightest star in the night sky, has an apparent magnitude of -1.46.

We can also define absolute magnitude, which is a star’s apparent magnitude if it were at a distance of 10 parsecs (32.6 light years) from the Earth.

6.3 Stellar temperatures

The temperature of a star is a fundamental property that astronomers can actually measure. We need to stress here though that we cannot measure interior temperature; we can only guess (and model on computers) what we think the temperature of a star is  in its centre. We can,  however,  measure the surface temperature of a star (not with a thermometer, but we will go into this more now!).

Before we start talking about stars, let’s first think about flames.

Figure: flames of different colours and temperatures. Image fromhere.

If you have ever looked into a fire, you might notice that different parts of the flame can look like they are different colours. The colours of the flame, in this case, is due to the different temperatures in the flame. But why is this the case? How does temperature relate to colour? Well, we covered this in an earlier lesson. Recall that objects emit thermal radiation and that their intensity per unit area of surface peaks at different wavelengths based upon temperature.

It is the thermal radiation laws that dictate the colour that a star will appear. This is also why we can only measure a star’s surface temperature; the thermal radiation emanates from the surface of the star, which dictates the shape of the plot above for each individual star.

Figure 15.4 from The Cosmic Perspective.

Spectral types

You might be starting to realise that it is common in astronomy (as with every science!) to group and categorise objects. Astronomers also categorise stars according to temperature. Well, technically, stars are grouped according to the spectral lines present in their spectrum, but this is related to temperature. Recall that atoms exist as molecules at cool temperatures and eventually break apart and become ionised atoms as temperatures increase. Therefore, the presence of particular spectral lines gives us an indicator of temperature.

The spectral classes in order of decreasing temperature are: O, B, A, F, G, K, M, L, T, Y (L, T, and Y are relatively new spectral types/classes). We can split these classes up even further into subclasses (e.g., B0, B1, …, B9). Just like magnitudes (the larger the magnitude, the fainter the star), a similar opposite number system” exists here, where the larger the number, the cooler the star. The Sun is a G2 type star.

The story of stellar spectral types

A quick historical interlude is  useful  here because you  might  be wondering, why are the spectral classes not in alphabetical order? Well, like many things that don’t make sense on the surface, there is a historical story that explains it.

Unfortunately, in the late 1800’s and early 1900’s, females were not allowed to enrol at many respectable institutes such as Harvard and were certainly never hired as faculty staff. This meant that it was very difficult for women to become practicing astronomers (it was difficult enough for men at the time, given that astronomical research did not pay well, and research often had to be funded by personal family wealth).

Henry Draper was an early pioneer in stellar spectroscopy. After his death, his wife donated much of his resources and research to the Harvard College Observatory . Edward Pickering, the observatory director at the time, used part of the gifts to hire computers” . “Computers” in the era that we are discussing are not the computers we use today but were typically women who had studied physics or astronomy at women’s colleges. One of the first such women was Williamina Fleming, who classified stellar spectra according to the strength of the hydrogen lines. She did this in alphabetical order, where type A stars had the strongest hydrogen lines, down to O type stars with the weakest. As  more detailed measurements of spectra were made, it became obvious that classifying stars based on hydrogen line strength was not adequate.  Annie  Jump  Cannon  reordered  the  sequence,  combined  some  classes,  and  added  the  numbered subcategories. The missing piece of the puzzle was still the physics that explains why stars could be classified in this way.

At the time, scientists thought that the spectral lines were an indicator of composition. Remember though, all stars are made primarily of hydrogen and helium, so composition wasn’t the right answer. It was Cecilia Payne-Gaposchkin who discovered that the strength of the spectral lines was dictated by the surface temperature of the star.

Table 15.1 from the Cosmic Perspective. The spectral sequence.

6.4 Stellar mass

Have you ever considered how we measure the mass of a star? We obviously can’t just pop stars onto a scale. You might consider trying to measure the physical size (diameter) of the star, but we don’t know the density of the star and we cannot measure the radius of distant stars with great enough accuracy, so we can’t use this method.

Remember how we could only tell that a black hole was there because of the way that it interacts with objects around it? The same thing is applicable here. As long as a star is orbiting another object and we can measure the orbital period and distance, we can calculate its mass using Newton’s version of Kepler’s third law (which we covered in an earlier lesson). We typically do this by analysing star systems where two stars are orbiting one another. We call these systems binary star systems, and they come in different types.

Visual binary star systems are systems where we can actually observe the two stars orbiting one another by observing them over a long period of time.

Spectroscopic binary star systems are systems where we have identified the presence of a star orbiting another due to the Doppler shift in the spectra of one of the stars (or both!).

Eclipsing binary star systems are systems where the plane of the system is along our line of sight and one star is eclipsed by the other. We observe changes in the apparent brightness of the star system based upon the orientation of the stars.

Try to put a mental pin in these detection methods, because we will be coming back to them when we talk about detecting extrasolar planets.

So, easy right? Measure the orbital period and distance and we can easily calculate mass . Well, this is half right. We can relatively easily measure the orbital period, but the orbital distance is much trickier. In rare cases, we can directly measure the orbital distances, but what about all of the systems that we can’t do this for? Well, think about a car going around a track. If you know how long it takes for the car to make one revolution of the track, to work out the radius of the track, you will need to know the speed of the car. By knowing the speed of the car, you can determine the distance (think: circumference of the track) that the car travels each revolution, we can use this information to calculate the radius/diameter of the track. We can do the same thing for stars, but how do we calculate the speed/velocity of the stars? You might be remembering that velocity is related to Doppler shift, and the larger the shift in the spectral lines, the faster the star is travelling towards or away from us . That is absolutely correct! The problem is though that the Doppler effect only gives us information about the star’s movement towards or away from us along our line of sight. So, unless the star is exactly along our line of sight, we cannot know it’s true velocity and we can only give a minimum value for velocity (and consequently mass). We therefore need systems that are orientated along our line of sight to use the Doppler method, and eclipsing binaries give us that unique opportunity. For stars to eclipse each other, they need to be almost exactly aligned along our line of sight. We can use the Doppler effect to determine stellar velocities, and as an added bonus, we can also determine the radii of the stars because we know their speed and we can time how long each eclipse lasts (stars with larger radii will cause eclipses that last longer than smaller stars for the same orbital speeds).

6.5 The Hertzsprung-Russell (HR) diagram introduction

You are now ready to learn about one of the most useful tools in astronomy. Hertzsprung-Russell (HR) diagrams are an incredibly useful and informative way to display and determine information about stars. They are named after two astronomers: Danish-born Ejnar Hertzsprung and American-born Henry Norris Russell.

HR diagrams plot stellar luminosity on one axis (typically the vertical axis) and spectral class (or temperature) on the other (typically the horizontal axis) and usually in reverse (decreasing temperature from left to right). When we plot stars on a graph in this way, we find some really interesting patterns.

Figure fromESA Gaia.

The first thing we can notice is that each location on the HR diagram gives us a unique luminosity and temperature combination. Stars in the:

-     Top left corner of the HR diagram are hot and luminous.

-     Bottom left are hot and not luminous.

-     Bottom right are cool and not luminous.

-     Top right are cool and luminous.

We can also tell something about the radii of stars from the HR diagram. How? Well, not taking into account the detailed mathematics, it is worth recalling from our discussion in an earlier lesson about thermal radiation that luminosity is dependent on surface area and temperature, i.e., as surface area increases and/or temperature increases, luminosity also increases.

To understand the implication of this on a HR diagram, let’s firstly consider two stars that have the same surface temperature/spectral class, say, M type (right hand side of the HR diagram). You’ll notice that we have low luminosity M-type stars and high luminosity M-type stars.  If they  have the same surface temperature, the stars with higher luminosity must be significantly larger (have larger stellar radii) than the lower luminosity stars of the same temperature. Let’s now consider two stars that are of the same size. If we vary the temperature and luminosity of these stars, for them to maintain the same size, as temperature increases, then luminosity must also increase. To put this simply, two stars can have the same radius if one has both a higher temperature and luminosity (top left of HR diagram) than the other (bottom right of HR diagram). This means that we can draw “lines of constant radius” on a HR diagram that are diagonal.

6.6 Groups on the HR diagram

A quick look at a HR diagram will quickly show you that stars are not scattered randomly but fall into major groups (often based upon the stage of the life that the star is in; more on this later!). Like many astronomy concepts, things wouldn’t be complete without a classification system, and we can classify groups based upon luminosity . The luminosity classes are designated by Roman numerals and are described below. In fact, putting it all together, we can combine luminosity classes with spectral classes and designate stars by their stellar classification: spectral class first, followed by their luminosity class. The Sun is described below.

1)   The most popular group is the obvious band that runs from the top left to the bottom right. It is called the main sequence. Our Sun currently resides on the main sequence. The main sequence is the luminosity class V. For example, the Sun has a stellar classification type of G2 V.

2)   The upper-most group on the HR diagram is the supergiants. These are incredibly luminous, very large, and relatively hot. Supergiants are the luminosity class I.

3)   Located just below the supergiants are giants, which are slightly lower in luminosity and size than supergiants. They are more luminous than main sequence stars of the same spectral type due to their larger size. They are the luminosity class III. Sitting in between the giants and supergiants is the luminosity class II, which are bright giants. Between giants and main sequence stars is one more luminosity class, IV, which are subgiants.

4)   At the bottom of the HR diagram below the main sequence is a group of stars that are very small and not luminous but can be quite hot. These are the white dwarfs, which we will discuss more later. These actually do not have their own luminosity class and are usually designated wd” .

It is natural to think that when a star is born, it falls into one of the groups above based on its luminosity, surface temperature, radius, etc., but in fact, this isn’t the case! One of the amazing things about the HR diagram is that it essentially tells the story of a star’s life, and stars tend to follow very particular paths through the HR diagram as they age. To learn about this, we are going to discuss the lives of stars and where the different stages of a star’s life fit into the HR diagram.

6.7 Star formation

In the previous lesson on the Milky Way, we were discussing where stars tend to form in galaxies, specifically the Milky Way. During this discussion, we identified that molecular clouds are the birth places of stars. If you can’t remember what a molecular cloud is, make sure you go back and revise it!

Molecular clouds make up what is known as the interstellar medium (medium, “the stuff”, in between stars , “interstellar”). At the end of lesson 4, we spoke about how spectroscopy can reveal the elements present in gas clouds as quasar light passes through them, and this is the same technique that is used to determine the composition of interstellar gas. On average, molecular clouds in the Milky Way have the same chemical composition (70% hydrogen, 28% helium, 2% other elements by mass), though certain regions can differ based upon temperature, density, etc.

You might think that it would be straightforward to measure the amount of each element in an interstellar gas cloud based upon spectra, but in fact, since molecular clouds are so cold, the hydrogen molecule H2 (which makes up most of the gas cloud) does not produce emission lines in regions that we typically study using spectra. Hydrogen does, however, readily bond with other elements to create other molecules (helium does not do this). We therefore often use other molecules (that make up a tiny fraction of the cloud’s mass) to study these gas clouds . Carbon monoxide (CO), which produces emissions at radio wavelengths, is the most abundant of these molecules . We have also detected other molecules with radio emission lines, including water (H2O), ammonia (NH3), and ethyl alcohol (C2H5OH).

Molecular clouds are also made up of interstellar dust (around 1% of a cloud’s mass). The dust particles, which we have studied under microscopes, are microscopic in size and are analogous to dust particles in your house. They are usually composed of metals (elements heavier than helium) such as carbon, oxygen, silicon, and iron, and their composition tells us a great deal about where they formed. The dust grains scatter/absorb most visible light and scatter shorter wavelengths of light (blue light) more effectively than longer wavelengths (red), meaning that stars observed near the edges of molecular clouds appear redder than they actually are. You can understand this by considering why sunsets appear red, or why the Sun appears redder when viewed through smog/smoke.

If stars look redder due to interstellar dust, how can we distinguish between dust grains and Doppler effects? Well, dust grains do not shift the spectral lines of stars, whereas Doppler shifts do. This reddening effect, called interstellar reddening, allows us to work out how much dust exists between us and a star based on how much redder the star appears compared to other stars of similar spectral types (the ones we identified earlier this lesson).

Scattering of short wavelengths means that to view astronomical objects behind dust clouds, we need to observe in longer wavelengths. Recall before that we said that dust clouds block out all forms of visible light; we therefore usually observe dust clouds in infrared wavelengths, because infrared radiation is not scattered to the same extent that visible light is.

The physics of star formation

Now that we have spoken a bit about the conditions under which stars form and the clouds that they form in, we will now go into the physics of stars actually forming from those clouds.

Stars are essentially a constant battle between two forces: (1) the gravitational force due to the mass of the gas comprising the star directed towards the centre of the star, and (2) the force due to the pressure of the compressed gas directed outwards from the centre of the star. Pressure is a measure of force per unit area, and you can think of it as the force that particles in a certain volume would exert on the wall of that volume (of course though, there is no wall” in a gas cloud in space). It is the fact that these two forces (gravity and pressure) aren’t always in balance that allows stars to form from molecular clouds.

For a cloud to collapse and begin a star formation, gravity has to win the battle against pressure. Pressure is dependent upon both the temperature and density of the gas making up the cloud. This is dictated by the ideal gas law, which you may have heard of. The ideal gas law states that the pressure is related to the temperature, volume, and amount of gas molecules.

•    If the temperature increases, the particles in the gas have more kinetic energy. This means that they travel faster and exert a higher force on the invisible wall” and collide with the wall more frequently, meaning that the pressure is higher. This is typically called thermal pressure.

•    If the density, which is a measure of the number of particles per unit volume, increases, the pressure will also increase because the number of particles colliding with the wall increases.

•    If the volume of the gas decreases, this reduces the wall area” that the particles have available to collide with, meaning that they collide more frequently with it and the pressure increases.

In gas clouds, the temperature is very low, meaning that thermal pressure can easily be overcome by gravity . Density is considerably higher, and although high densities generally mean high pressure, we need higher densities so that particles can clump together and produce a significant force due to gravity. The volume of a gas cloud typically starts off very large, and obviously decreases as the clump collapses.

As the gas cloud starts to contract, potential energy (which we spoke about in lesson 2) is converted to thermal energy. If the cloud couldn’t radiate heat and lower the thermal energy, the thermal pressure would eventually balance gravity and the cloud’s collapse would halt. However, the gas cloud can radiate the thermal energy away when molecules collide, convert thermal energy into the excitation of molecules, which release that energy in the form of photons (we have spoken about this process too!). The photons can, and will eventually, escape the gas cloud, and provided that they can, thermal energy is radiated away from the cloud and the temperature of the cloud remains low enough for collapse to continue.

This sounds like a rather simple story for forming stars, but it is a little more complicated than that. To determine whether our story is true or needs more details, we have to do a couple of things that forms the basis of science: (1) use real data and mathematical formulae to determine likely outcomes, and (2) compare to observations.

When astronomers observe star-forming regions, they find that most stars are born in large clusters that started life as a high-mass gas cloud, which can be up to a few thousand times more massive than the Sun . By doing calculations, we can determine that gas clouds only need to be at least a few hundred times the mass of the Sun to start forming stars. This raises a couple of interesting questions. First, how do gas clouds become so much more massive than they have to be to start forming stars, and why do clusters of stars form instead of one massive star? We will answer these questions in turn now.

1) How do gas clouds become so much more massive than they have to be to start forming stars?

There is still research being done on this question, given that it is very difficult to model in the laboratory and on computers, and it is difficult to observe given it occurs over such a long timeframe! However, there are a couple of factors that astronomers think come into play. Firstly, astronomers think that the gas cloud is turbulent, and that clumps of gas within the gas cloud move at different speeds. To ensure turbulence doesn’t “rip apart” the cloud, the force holding the gas cloud together (gravity) must be significant. Secondly, magnetic fields can assist with the cloud’s ability to resist collapse against gravity. Charged particles in the magnetic field will follow the direction of the magnetic (think about magnets and iron filings, or the needle on a compass aligning with the Earth’s magnetic field). Charged particles that interact with non-charged particles can create friction and disrupt gas in the cloud, slowing collapse.

2) Why do clusters of stars form instead of one massive star?

As we said earlier, photons that radiate from the cloud reduce thermal pressure, meaning that gravity more easily wins the battle and lower masses are able to collapse. However, this isn’t the whole story . Recall that galaxies form in the Universe due to small density imperfections (fluctuations) in the matter that makes up the Universe. This same principle applies here. Clouds are typically clumpy” and tend to fragment, meaning small, dense clumps can contract on their own.

We must emphasise though that stars can form in gas clouds that are only 10-20 times the mass of the Sun (as opposed to the thousands that we spoke about earlier), though it still puzzles astronomers how these clouds can contract to high enough densities to form stars.

What about stars with no heavy elements? The first stars?

The first stars that formed from the Big Bang would have only contained hydrogen and  helium (and other trace elements). Stars in the Milky Way today contain around 2% of elements that are heavier than helium. Astronomers call these elements metals (they’re different to the metals that we usually come across in our lives today!).

Remember before how astronomers find it very difficult to measure hydrogen in gas clouds, but since the clouds are so cool, we are able to measure molecules that contain hydrogen, the most abundant of these being carbon monoxide. Well, in the first gas clouds, there would have only been hydrogen and helium. The molecules not only help with detecting how much mass exists in these gas clouds, but also help radiate away the thermal energy that allows them to remain cool.

Even though these molecules only make up a tiny part of the gas cloud’s mass, the result on the temperature of the cloud (due to the inability to radiate photons and thermal energy) is significant. In the absence of observations, computer simulations show us that these gas clouds would have had temperatures of around 100 K, as opposed to the 10-30 K that typically exists in gas clouds today. To overcome thermal energy, the first stars were probably more massive than we typically see stars being today. Massive stars die off quicker than lower mass stars (we will look at this in more detail soon), so the first stars would have already died off.

6.8 The pre-main sequence

As we said earlier, during a star’s life, it will follow a particular path on the HR diagram. Now that we have spoken about how stars form, we can start to discuss the path that a star may take on the HR diagram.

As stars form (i.e., the gas cloud collapses), they begin their lives as pre-main sequence stars. On the HR diagram, the pre-main sequence is situated just above the main sequence. We use the phrase pre-main sequence”  because eventually, stars descend the HR diagram and move onto the main sequence. We will continue our story about star formation and will end with why stars move onto the main sequence.

In the previous section, we had a gas cloud that was able to contract because the force due to gravity was higher than the thermal pressure of the centre of the cloud. It becomes increasingly difficult for photons (and therefore energy) to escape, and thermal pressure builds up as central temperatures rise. When essentially all of the thermal radiation inside the gas cloud cannot escape, we mark this as the beginning of the protostar phase (or pre” star/pre-main sequence phase!). The protostar has high surface temperatures and luminosities, like normal stars, but there is one key difference. Protostars do not have nuclear fusion occurring in their cores.

Have you considered how stars “live”? What is their primary fuel source that allows them to keep burning? In lesson 2, we spoke about matter. When atoms combine to produce a new atom, we call this process nuclear fusion. Specifically, it is the fusing of hydrogen atoms together that powers stars. You might be wondering how atoms fusing together can create enough energy to stop the force of gravity causing the star to collapse.

Nuclear fusion in stars is different to the process that occurs in nuclear power plants. Nuclear fusion occurs in stars, which fuses two elements together to form a heavier one. Nuclear fission occurs in power plants, which breaks apart a large atom into smaller ones. For power plants to work, the plant must produce more energy than it consumes. We can easily achieve this with nuclear fission because large amounts of energy are released for very little energy input. However, the by-products of nuclear fusion are damaging to humans and the environment. Nuclear fusion, on the other hand, would eliminate destructive by-product waste, however humans have not achieved a nuclear fusion process where more energy is produced than is consumed in the process. This is because the temperatures, pressures, and densities that this occurs in stars is very difficult to replicate on Earth.

Why do we need such high temperatures for nuclear fusion? In lesson 3 we spoke about the strong force, which overpowers the other forces but only operates over very small distances. It is this strong force that is needed to fuse two nuclei together (plus some extra quantum physics, which we won’t discuss in detail). To do this, we need to collide atoms together at very high s