Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

ITS 66204

DISCRETE STRUCTURES

FINAL ASSESSMENT

AUGUST 2022 SEMESTER

SECTION A

Structured questions  100 marks

Answer all questions.

QUESTION 1 (20 Marks)

a)  Rewrite the following statement in if-then form.

i.     Achieve a grade of A- in this module is a sufficient condition for it to count towards scholarship. (1 Mark)

ii.     Being  on  time  each  day  is  a  necessary  condition for  getting  company’s reward. (1 Mark)

iii.     Having a large income is not necessary condition for a person to be aloof. (1 Mark)

b)  Use Logical Equivalence Theorem to verify the logical equivalences below. ((¬q ∨ ¬p) ∧ (¬q p)) ∨ (¬p q) ≡ ¬(p q) (11 Marks)

c)  A set of premises and a conclusion are given below. Use the valid arguments forms to deduce the conclusion from the premises, giving a reason for each step. Assume all variables are statement variables.

q

 → t s

~q ∨

~s ∧ p

 t (6 Marks)

QUESTION 2 (20 marks)

a)  Use the method of proof by contradiction to prove the following statement.

i.     Prove  that for  any  irrational  number  k,  the  square  root  of k  is  irrational number. (3 Marks)

ii.     Prove that integer p, q and r , if p qr then p q . (3 Marks)

iii.     Prove that odd integers r and s , s 2  r 2  ≠ 6. (5 Marks)

b)  Find counterexample to show that the statements are false.

i.     For every integer x and y , if x is odd or y is odd then x + y is odd. (3 Marks)

ii.     real number a and b , a + b⌉ = ⌈a⌉ + ⌈b⌉ . (3 Marks)

iii.     ∀  integer x, y and z , if x  is a factor of z  and y  is a factor of z , then xy  is a factor of z . (3 Marks)


QUESTION 3 (20 Marks)

a)  Prove the following statement by using induction method. For any integer n ≥ 2,  ∑j(n)1(1)j(j + 1) =  . (7 Marks)

b)  Let b0, b1, b2, … .  Be the sequence defined by the explicit formula b0  = A ∙ 2n  + B for

each integer n ≥ 0, where A and B are real number.

i.     Show that for any choice of A  and B , bk  = 3bk − 1  − 2bk − 2   for every integer

k ≥ 2. (4 Marks)

ii.     Find the value of A and B for bk  = 3bk − 1  − 2bk − 2  , k ≥ 2 with initial conditions b0  = 1 and b1  = 3. (5 Marks)

c)  Let M = {k ∈ ℕ: 4 ≤ k < 12} and N = {k ∈ ℕ: k = 2n} .

i.     Find M N

ii.     Find M\N (4 Marks)


QUESTION 4 (20 Marks)

a)  Let P be the set of all Malay statements. A relation on I is defined on P as follows:   For each a, b P , aIb b  is true. Determine whether the relation is reflexive, symmetric and transitive. (6 Marks)

b)  If a Bank X pays interest at a rate of 2% per year compounded annually and An denotes the amount in the account at the end of year n, then Ak  = (2.04)Ak−1 , for each integer k ≥ 1, assuming no deposits or withdrawals during the year. Suppose the initial amount deposited is RM 100,000, and assume that no additional deposits or withdrawals are made.

i.     How much will the account be worth at the end of 10 years?

ii.     How many years will the account be worth RM 1,000,000? (5 Marks)

c)  By  using  the  binomial  expansion,  find  the  constant  term  for  the  expression (2y )6 . (9 Marks)

QUESTION 5 (20 Marks)

a)  Suppose that in a Country A, all automobile license plates have three uppercase letters followed by four digits.

i.     How many different license plates are possible?

ii.     How many license plates could begin with A and end in 0?

iii.     How many license plates are possible in which all the letters and digits are distinct? (6 Marks)

b)  If seven integers are chosen from between 1 and 12 inclusive, must at least one of them be odd? Why? (4 Marks)

c)  Write a simple report on how SDG7: Affordable, Clean and Renewable Energy being applied on Graph Theory.

Your  answer  must  include  related  definitions,  terminology,  picture/graph  and calculation/steps to support your explanation. (10 Marks)