Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

ST903: Statistical Methods

Assignment 2

1: Let X1 , . . . ,Xn  be i.i.d. with the pdf

f(x;θ) = θxθ 1 ,

for 0 ≤ x ≤ 1 and θ > 0.

(i) Find the maximum likelihood estimator (MLE) θˆ of θ .   (Help:  do not forget that this    includes verifying that θˆ is indeed MLE).                                                                             [3]

(ii) If we define Yi  = −log Xi , then derive the distribution of Yi  and of  Yi . In each case

give the name of the distribution and clearly state the relevant parameters.                      [3]

(iii) Derive the first two moments, i.e. the expectation and the variance, of θˆ. (iv) Is your MLE θˆ a consistent estimator of θ? Explain your answer.

[3]

[2]

[TOTAL: 11]

2: In order to model counts of accidents on a stretch of road, we consider the following hierarchical

Bayesian model:

We model the counts Y1 , . . . ,Yn  as independently generated from a Poisson distribution with rate parameter λ , i. e. for i = 1, . . . ,n:

exp(λ)λy

P(Yi  = y|λ) =         y!        ,   y = 0, 1, 2..

We further assume that λ has a Gamma(α,β) prior distribution which corresponds to the probability density function

f(λ|β) = βα Γ(α)1 λα 1 exp(−βλ) ,  λ > 0,

where α is a known positive number while the scale parameter in this prior distribution, β, is itself unknown and has a Gamma(a,b) prior with known a,b > 0.

(i) Write down the likelihood for λ given the observed sample y1 , . . . ,yn .                                [2]

(ii) Derive the joint posterior distribution of the free parameters λ,β given y1 , . . . ,yn   (up

to a proportionality constant) and explain why a numerical method is required here for    conducting inference from this posterior.                                                                              [3]

(iii) Derive the relevant full conditionals and explain how you would analyse the posterior

distribution obtained in (ii) through Gibbs sampling.                                                          [4]

[TOTAL: 9]