Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit


MAST20026 Assignment 5

Semester 2 2022

This assignment consists of 2 pages.

Due Date: Friday 21 Oct

Assignments are due in Gradescope on the due date listed above. To ease submission, please prepare assignment solutions for each question on its own page. Do not include your name anywhere on your assignment.

Students are encouraged to work together on understanding the problems and their solutions. However, submitted solutions must be prepared individually, in your own words, and without the aid of others.  Answers presented without justification will receive no marks.

If you  do  not  completely  understand your  submitted  solutions,  it  is possible you  are  committing  academic misconduct. This is a serious offense.

Please do not upload this assignment paper or any of its questions to any online “help”service (e.g., CourseHero, Chegg, etc...). By doing so, you are actively ruining the learning experience for yourself and future students and more than likely violating the University’s academic misconduct policy.

PART A

Read the definition of gauge integral from Wikipedia (under the title Henstock - Kurzweil integral). Read the open letter https://math.vanderbilt.edu/schectex/ccc/gauge/letter/.  Write a short response (< 250 words) response that considers the following questions.

● Do you think the definition of gauge integral have similar conceptual difficulty  as that of Riemann integral?

● Would you be happier if you were taught gauge integral in Calculus or Real Analysis?

5 marks

PART B

(2)  (5 marks) Prove the Mean Value Theorem using the six steps outlined at the end of 6.1.1. In your work you may assume derivatives of linear functions can be computed as you expect and that linear functions are continuous on their domain.

(3)  Consider the following theorem and its proof.

Theorem.  Let f : [a; b] → R be bounded.  Then f  is integrable on [a; b] if and only if for every  > 0 there exists a partition Pe  such that

U (f; Pe ) _ L(f; Pe ) <

1                             Proof. Assume f is integrable on [a; b]. Let  > 0. Let  \  =  .

2                             There exists a e (L(f; P) I P e } such that a > L(f) _  \ .

3                             Similarly, there exists b e (U (f; P) I P e } such that b < U (f) +  \ .

4                             Since a e (L(f; P) I P e } there exists P e  such that L(f; P) = a.

5                             Similarly, there exists Q e  such that U (f; Q) = b.

6                             Therefore L(f; P) +  \  > L(f) and U (f) > U (f; Q) _  \ .

7                             Since f is integrable on [a; b] we have L(f) = U (f).

8                             And so L(f; P) +  \  > U (f; Q) _  \ .

9                             Rearranging, we have U (f; Q) _ L(f; P) <  \ +  \  =  .

10                             Consider the partition P u Q. Notice P u Q is a refinement of both P and Q.

11                             We have L(f; P) < L(f; P u Q) and U (f; Q) > U (f; P u Q).

12                             Therefore U (f; P u Q) _ L(f; P u Q) <  .

13                             Therefore for every  > 0 there exists a partition Pe  such that U (f; Pe ) _ L(f; Pe ) <  .

14                             To prove the converse, we proceed by contradiction.

15                             Assume for every . L 0 there exists a partition Q such that l (f< Q) _ P(f< Q) > ., but f is not integrable

16                             on [a< b].

17                             Since f is not integrable on [a< b] we have P(f) > l (f).

18                             Let r = l (f) _ P(f). Notice r L 0. Let . = r .

19                             By hypothesis, there exists a partition Qe  such that l (f< Qe ) _ P(f< Qe ) > ..

20                             Notice l (f< Qe ) _ P(f< Qe ) = (l (f< Qe ) _ l (f)) + (P(f) _ P(f< Qe )) + (l (f) _ P(f)).

21                             By definition l (f< Qe ) _ l (f) > 0 and P(f) _ P(f< Qe ) > 0.

22                             Therefore l (f< Qe ) _ P(f< Qe ) > 0 + 0 + r = ..

23                             This is a contradiction.

24                             Therefore if for every .  L 0 there exists a partition Qe  such that l (f< Qe ) _ P(f< Qe )  > ., then f is

25                             integrable on [a< b].

(a)  (2 mark ) How do you know the statement on line 2 is true.  Cite a result or definition from the subject material to justify your response.

(b)  (2 mark ) How do you know the second sentence on line 10 is true.  Cite a result or definition from the subject material to justify your response.

(c)  ( 1 mark ) How do you know the inequalities on line 11 are true. Cite a result or definition from the subject material to justify your response.

(d)  ( 1 mark ) Which definition(s) are being referenced on line 21?

(e)  ( 1 mark ) What is the contradiction on line 23? In particular, which two lines contradict one another.

(4)  Let f : [a< b] → R be a bounded function such that for every z< y e [a< b], if z < y then f (z) < f (y).

(a)  (3 marks) Let n e N  and let Qn  = (z0 < , , , < zn } be the partition of [a< b] with zk  _ zk - 1 =  for

k e (1< 2< , , , n}.

Prove

l (f< Qn ) _ P(f< Qn ) =

(b)  (3 marks) Prove f is integrable on [a< b] using the theorem from Question (3).

PART C (Optional nothing to submit, no marks, you will not be assessed on the content of PART C)

● The LATEX  source le for this assignment can be found in the Assignment 5 folder in Files on Canvas. This is a great starting point if you want to prepare your solution for this assignment using LATEX.

● In this folder you will also nd a named Assignment5PartC.zip. Open, unzip, and compile these les in your LATEX  editor and read about graphics and gures. In this zip le you will nd a .txt le with more information on how to do this.