Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MAST20026

Semester 1, 2019

Question 1 (4 marks)

Let p and q be two statements (i.e., propositions).  Express p ^ q (the conjunction of p and q) in terms of the negation (not) and disjunction (or).  That is, find a compound statement in terms of p and q using only ⇠ and _. Use a truth table to show that your two statements are equivalent.

Question 2 (6 marks)

Which of the following statements are true and which are false?

For the false statements, give a counterexample.

(a) 8x 2 R, 9y 2 R,  y > x

(b) 8x 2 R, 9y 2 R,  0 < y < x

(c) 8x 2 R,  x2  > x

(d)  9x,y 2 R,  (x = y) ^ (x = −y)

Question 3 (10 marks)

Recall that a subset A Q is called a Dedekind cut is it satisfies the following three properties:

i)  A  ; and A  Q

ii) 8a,b 2 Q, (a 2 A) ^ (b < a)  =) (b 2 A)

iii) 8a 2 A 9b 2 A, a < b

(In the following you may use the ordering and algebraic properties of Q without proof.)       (a)  Prove that the set of negative rational numbers N = {q 2 Q : q < 0} is a Dedekind cut. (b) Let A and B be Dedekind cuts. Prove that the sum”

A + B = {q 2 Q : 9a 2 A9b 2 B, q = a + b}

is a Dedekind cut.

Question 4 (10 marks)

(a) Let A R.

(i)  Give the denition of supA, the supremum of A.

(ii)  Give the definition of a limit point of A.

(b) Let A be a bounded subset of R, and let ↵ = supA.  Prove that either ↵ 2 A or ↵ is a

limit point of A.

(c) Let f,g : R −! R be two functions and let A R. Recall that the supremum of a function f on A is defined by supA f = sup{f(x) : x 2 A}. Prove that

sup(f + g) 6 supf +supg

A                            A               A

Question 5 (8 marks)

(a) State the e-6 definition of convergence for a sequence.

(b) Prove (using the e-6 definition) that the sequence defined by

an =

n2 +3

3n2 − 1

satisfies

nlim!1an =

Question 6 (10 marks)

(a) Dene what it means for a subset A ✓ R to be open.

(b) Prove that if A and B are two open sets, then the intersection A \ B is open.

(c) Give an example of a nonempty set which is not open, and prove that it is not open.

(d) Provide an example of a family of sets (An) such that each An  is open but the inter- section T An  is not open. (No proof is required.)

 

 

Question 7 (8 marks)

Let f : R ! R be a bounded function. Assume that for all x 2 R, limy! f(y) exists and that f(x) > limy! f(y).

(a) Give an example of such a function that is not continuous.

(b) Prove that any such f attains a maximum on [0, 1].

(i.e., there is a c 2 [0, 1] such that f(c) > f(x) for all x 2 [0, 1])

Question 8 (8 marks)

Let f : [−1, 1] ! R be given by f(x) = (0(x)sin(北(1)

(a) Show that f is continuous at x = 0.

(b) Show that f is not di↵erentiable at x = 0.

(You may use without proof that sin(1/x) has no limit as x ! 0.)

Question 9 (8 marks)

(a) State the Mean Value Theorem.

(b) Let f : [−1, 1] ! R be a function that is continuous on [−1, 1] and di↵erentiable on (−1, 1).

Suppose that f(−1) = −1, f(1) = 1 and that Ax 2 (−1, 1) we have f\ (x) 6 1.

Use the Mean Value Theorem to show that f(x) = x for all x 2 [−1, 1].

Question 10 (4 marks)

Consider the function f : [0, 1] ! R given by f(x) =

Without computing the integral explicitly, show that

 6 Z0 1   6

(Hint: consider the partition {0,  , 1} of [0, 1].)

Question 11 (8 marks)

Let f : [0, 1] ! R be given by f(x) = (^10

x 2 (0, 1]

x = 0

(a) Explain why f is not integrable.

(b)  Does f have an improper Riemann integral?

Either calculate the improper integral or show that it doesn’t exist.

Question 12 (8 marks)

(a) For each of the following infinite series, use appropriate tests to either prove that the series

converges or that it diverges.

(i)  

(ii)  

1

(iii)  X en

n=1

(b) Find radius of convergence and the interval of convergence for the power series  n xn

Question 13 (8 marks)

(a)  State Taylor’s Theorem.

(b) Use Taylor’s Theorem to show that if x > 0, then

1+   < ^1+ x < 1+